Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractSpin and pseudospin in graphene are known to interact under enhanced spin–orbit interaction giving rise to an in-plane Rashba spin texture. Here we show that Au-intercalated graphene on Fe(110) displays a large (∼230 meV) bandgap with out-of-plane hedgehog-type spin reorientation around the gapped Dirac point. We identify two causes responsible. First, a giant Rashba effect (∼70 meV splitting) away from the Dirac point and, second, the breaking of the six-fold graphene symmetry at the interface. This is demonstrated by a strong one-dimensional anisotropy of the graphene dispersion imposed by the two-fold-symmetric (110) substrate. Surprisingly, the graphene Fermi level is systematically tuned by the Au concentration and can be moved into the bandgap. We conclude that the out-of-plane spin texture is not only of fundamental interest but can be tuned at the Fermi level as a model for electrical gating of spin in a spintronic device.

Bibliography

Varykhalov, A., Sánchez-Barriga, J., Marchenko, D., Hlawenka, P., Mandal, P. S., & Rader, O. (2015). Tunable Fermi level and hedgehog spin texture in gapped graphene. Nature Communications, 6(1).

Authors 6
  1. A. Varykhalov (first)
  2. J. Sánchez-Barriga (additional)
  3. D. Marchenko (additional)
  4. P. Hlawenka (additional)
  5. P. S. Mandal (additional)
  6. O. Rader (additional)
References 31 Referenced 51
  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007). (10.1038/nmat1849) / Nat. Mater. by AK Geim (2007)
  2. Wallace, P. R. Band theory of graphite. Phys. Rev. B 71, 622–634 (1947). (10.1103/PhysRev.71.622) / Phys. Rev. B by PR Wallace (1947)
  3. Bostwick, A. et al. Symmetry breaking in few layer graphene films. New. J. Phys. 9, 385 (2007). (10.1088/1367-2630/9/10/385) / New. J. Phys. by A Bostwick (2007)
  4. Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J. & van den Brink, J. Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007). (10.1103/PhysRevB.76.073103) / Phys. Rev. B by G Giovannetti (2007)
  5. Das, S. & Appenzeller, J. On the importance of bandgap formation in graphene for analog device applications. IEEE Trans. Nanotechnol. 10, 1093–1098 (2011). (10.1109/TNANO.2011.2109007) / IEEE Trans. Nanotechnol. by S Das (2011)
  6. Rusponi, S. et al. Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice. Phys. Rev. Lett. 105, 246803 (2010). (10.1103/PhysRevLett.105.246803) / Phys. Rev. Lett. by S Rusponi (2010)
  7. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (10.1038/nature04233) / Nature by KS Novoselov (2005)
  8. Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010). (10.1126/science.1184289) / Science by Y-M Lin (2010)
  9. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010). (10.1038/nature09405) / Nature by L Liao (2010)
  10. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). (10.1038/nature08105) / Nature by Y Zhang (2009)
  11. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007). (10.1038/nature06037) / Nature by N Tombros (2007)
  12. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005). (10.1103/PhysRevLett.95.226801) / Phys. Rev. Lett. by CL Kane (2005)
  13. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008). (10.1038/nature06822) / Nature by F Kuemmeth (2008)
  14. Varykhalov, A. et al. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 101, 157601 (2008). (10.1103/PhysRevLett.101.157601) / Phys. Rev. Lett. by A Varykhalov (2008)
  15. Marchenko, D. et al. Giant Rashba splitting in graphene due to hybridization with gold. Nat. Commun. 3, 1232 (2012). (10.1038/ncomms2227) / Nat. Commun. by D Marchenko (2012)
  16. Marchenko, D., Sánchez-Barriga, J., Scholz, M. R., Rader, O. & Varykhalov, A. Spin splitting of Dirac fermions in aligned and rotated graphene on Ir(111). Phys. Rev. B 87, 115426 (2013). (10.1103/PhysRevB.87.115426) / Phys. Rev. B by D Marchenko (2013)
  17. Varykhalov, A., Scholz, M. R., Kim, T. K. & Rader, O. Effect of noble-metal contacts on doping and band gap of graphene. Phys. Rev. B 82, 121101(R) (2010). (10.1103/PhysRevB.82.121101) / Phys. Rev. B by A Varykhalov (2010)
  18. Vinogradov, N. A. et al. Formation and structure of graphene waves on Fe(110). Phys. Rev. Lett. 109, 026101 (2012). (10.1103/PhysRevLett.109.026101) / Phys. Rev. Lett. by NA Vinogradov (2012)
  19. Rakyta, P., Kormányos, A. & Cserti, J. Effect of sublattice asymmetry and spin-orbit interaction on out-of-plane spin polarization of photoelectrons. Phys. Rev. B 83, 155439 (2011). (10.1103/PhysRevB.83.155439) / Phys. Rev. B by P Rakyta (2011)
  20. Varykhalov, A. et al. Intact Dirac cones at broken sublattice symmetry: photoemission study of graphene on Ni and Co. Phys. Rev. X 2, 041017 (2012). / Phys. Rev. X by A Varykhalov (2012)
  21. Gierz, I. et al. Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Phys. Rev. B 81, 235408 (2010). (10.1103/PhysRevB.81.235408) / Phys. Rev. B by I Gierz (2010)
  22. Enderlein, C., Kim, Y. S., Bostwick, A., Rotenberg, E. & Horn, K. The formation of an energy gap in graphene on ruthenium by controlling the interface. New J. Phys. 12, 033014 (2010). (10.1088/1367-2630/12/3/033014) / New J. Phys. by C Enderlein (2010)
  23. Shikin, A. M. et al. Induced spin-orbit splitting in graphene: the role of atomic number of the intercalated metal and π-d hybridization. New J. Phys. 15, 013016 (2013). (10.1088/1367-2630/15/1/013016) / New J. Phys. by AM Shikin (2013)
  24. Rashba, E. I. Graphene with structure-induced spin-orbit coupling: spin-polarized states, spin zero modes, and quantum Hall effect. Phys. Rev. B 79, 161409(R) (2009). (10.1103/PhysRevB.79.161409) / Phys. Rev. B by EI Rashba (2009)
  25. Kuemmeth, F. & Rashba, E. I. Giant spin rotation under quasiparticle-photoelectron conversion: joint effect of sublattice interference and spin-orbit coupling. Phys. Rev. B 80, 241409(R) (2009). (10.1103/PhysRevB.80.241409) / Phys. Rev. B by F Kuemmeth (2009)
  26. Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009). (10.1103/PhysRevB.80.235431) / Phys. Rev. B by M Gmitra (2009)
  27. Xu, S.-Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012). (10.1038/nphys2351) / Nat. Phys. by S-Y Xu (2012)
  28. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). (10.1103/PhysRevLett.99.236809) / Phys. Rev. Lett. by D Xiao (2007)
  29. Jiang, H., Qiao, Z., Liu, H. & Niu, Q. Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film. Phys. Rev. B 85, 045445 (2012). (10.1103/PhysRevB.85.045445) / Phys. Rev. B by H Jiang (2012)
  30. Tsai, W.-F. et al. Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat. Commun. 4, 1500 (2013). (10.1038/ncomms2525) / Nat. Commun. by W-F Tsai (2013)
  31. Varykhalov, A., Rader, O. & Gudat, W. Structure and quantum-size effects in a surface carbide: W(110)/C-R(15 × 3). Phys. Rev. B 72, 115440 (2005). (10.1103/PhysRevB.72.115440) / Phys. Rev. B by A Varykhalov (2005)
Dates
Type When
Created 10 years, 1 month ago (July 27, 2015, 6:08 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:16 a.m.)
Indexed 1 week ago (Aug. 27, 2025, 12:26 p.m.)
Issued 10 years, 1 month ago (July 27, 2015)
Published 10 years, 1 month ago (July 27, 2015)
Published Online 10 years, 1 month ago (July 27, 2015)
Funders 0

None

@article{Varykhalov_2015, title={Tunable Fermi level and hedgehog spin texture in gapped graphene}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8610}, DOI={10.1038/ncomms8610}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Varykhalov, A. and Sánchez-Barriga, J. and Marchenko, D. and Hlawenka, P. and Mandal, P. S. and Rader, O.}, year={2015}, month=jul }