Abstract
AbstractZeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4for SiO4tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.
References
47
Referenced
158
-
Hunger, M. in Zeolites and Catalysis: Synthesis, Reactions, and Applications. (eds Čejka J., Corma A., Zones S. ) 493–546Wiley-VCH (2010).
(
10.1002/9783527630295.ch17
) -
Kramer, G. J. & Van Santen, R. A. Theoretical determination of proton affinity differences in zeolites. J. Am. Chem. Soc. 115, 2887–2897 (1993).
(
10.1021/ja00060a042
) / J. Am. Chem. Soc. by GJ Kramer (1993) -
Groen, J. C. et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J. Am. Chem. Soc. 127, 10792–10793 (2005).
(
10.1021/ja052592x
) / J. Am. Chem. Soc. by JC Groen (2005) -
Van Bokhoven, J. A., Koningsberger, D. C., Kunkeler, P., van Bekkum, H. & Kentgens, A. P. M. Stepwise dealumination of zeolite beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR. J. Am. Chem. Soc. 122, 12842–12847 (2000).
(
10.1021/ja002689d
) / J. Am. Chem. Soc. by JA Van Bokhoven (2000) -
Van Bokhoven, J. A. & Danilina, N. in Zeolites and Catalysis: Synthesis, Reactions, and Applications eds Čejka J., Corma A., Zones S. 283–300Wiley-VCH (2010).
(
10.1002/9783527630295.ch10
) -
Bellussi, G., Carati, A. & Millini, R. in Zeolites and Catalysis: Synthesis, Reactions, and Applications eds Čejka J., Corma A., Zones S. 449–491Wiley-VCH (2010).
(
10.1002/9783527630295.ch16
) - Corma, A. in Studies in Surface Science and Catalysis eds Jacobs P.A., van Santen R.A. 49–67Elsevier (1989).
-
Lercher, J. A. & Jentys, A. in Handbook of Porous Solids eds Schuth F., Sing K.S., Weitkamp J. 1097–1156Wiley-VCH (2002).
(
10.1002/9783527618286.ch18h
) -
Kokotailo, G. T., Lawton, S. L., Olson, D. H., Olson, D. H. & Meier, W. M. Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978).
(
10.1038/272437a0
) / Nature by GT Kokotailo (1978) -
Olson, D. H., Kokotailo, G. T., Lawton, S. L. & Meier, W. M. Crystal-structure and structure-related properties of ZSM-5. J. Phys. Chem. 85, 2238–2243 (1981).
(
10.1021/j150615a020
) / J. Phys. Chem. by DH Olson (1981) -
Van Koningsveld, H., Jansen, J. C. & Van Bekkum, H. The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites 10, 235–242 (1990).
(
10.1016/0144-2449(94)90134-1
) / Zeolites by H Van Koningsveld (1990) -
Heo, N. H. et al. Detailed determination of the Tl+ positions in zeolite Tl-ZSM-5. Single-crystal structures of fully dehydrated Tl-ZSM-5 and H-ZSM-5 (MFI, Si/Al=29). Additional evidence for a nonrandom distribution of framework aluminum. J. Phys. Chem. C 113, 19937–19956 (2009).
(
10.1021/jp9061913
) / J. Phys. Chem. C by NH Heo (2009) -
Olson, D. H., Khosrovani, N., Peters, A. W. & Toby, B. H. Crystal structure of dehydrated Cs-ZSM-5 (5.8Al): evidence for nonrandom aluminum distribution. J. Phys. Chem. B 104, 4844–4848 (2000).
(
10.1021/jp000417r
) / J. Phys. Chem. B by DH Olson (2000) -
Han, O. H., Kim, C. S. & Hong, S. B. Direct evidence for the nonrandom nature of Al substitution in zeolite ZSM-5: an investigation by 27Al MAS and MQ MAS NMR. Angew. Chem. Int. Ed. 41, 469–472 (2002).
(
10.1002/1521-3773(20020201)41:3<469::AID-ANIE469>3.0.CO;2-K
) / Angew. Chem. Int. Ed. by OH Han (2002) -
Sklenak, S. et al. Aluminum siting in silicon-rich zeolite frameworks: a combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5. Angew. Chem. Int. Ed. 46, 7286–7289 (2007).
(
10.1002/anie.200702628
) / Angew. Chem. Int. Ed. by S Sklenak (2007) -
Vjunov, A. et al. Quantitatively probing the Al distribution in zeolites. J. Am. Chem. Soc. 136, 8296–8306 (2014).
(
10.1021/ja501361v
) / J. Am. Chem. Soc. by A Vjunov (2014) -
Althoff, R., Schulzdobrick, B., Schuth, F. & Unger, K. Controlling the spatial-distribution of aluminum in ZSM-5 crystals. Microporous Mater. 1, 207–218 (1993).
(
10.1016/0927-6513(93)80079-A
) / Microporous Mater. by R Althoff (1993) -
Chao, K. J. & Chern, J. Y. Aluminum distribution in large ZSM-5 crystals. Zeolites 8, 82–85 (1988).
(
10.1016/S0144-2449(88)80036-8
) / Zeolites by KJ Chao (1988) -
Danilina, N., Krumeich, F., Castelanelli, S. A. & van Bokhoven, J. A. Where are the active sites in zeolites? Origin of aluminum zoning in ZSM-5. J. Phys. Chem. C 114, 6640–6645 (2010).
(
10.1021/jp1006044
) / J. Phys. Chem. C by N Danilina (2010) -
Karwacki, L. et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nat. Mater. 8, 959–965 (2009).
(
10.1038/nmat2530
) / Nat. Mater. by L Karwacki (2009) -
Ristanovic, Z. et al. Intergrowth structure and aluminium zoning of a zeolite ZSM-5 crystal as resolved by synchrotron-based micro X-ray diffraction imaging. Angew. Chem. Int. Ed. 52, 13382–13386 (2013).
(
10.1002/anie.201306370
) / Angew. Chem. Int. Ed. by Z Ristanovic (2013) -
Vonballmoos, R. & Meier, W. M. Zoned aluminum distribution in synthetic zeolite ZSM-5. Nature 289, 782–783 (1981).
(
10.1038/289782a0
) / Nature by R Vonballmoos (1981) -
deLucas, A., Canizares, P., Duran, A. & Carrero, A. Dealumination of HZSM-5 zeolites: effect of steaming on acidity and aromatization activity. Appl. Catal. A: Gen. 154, 221–240 (1997).
(
10.1016/S0926-860X(96)00367-5
) / Appl. Catal. A: Gen. by A deLucas (1997) -
Beyerlein, R. A., ChoiFeng, C., Hall, J. B., Huggins, B. J. & Ray, G. J. Effect of steaming on the defect structure and acid catalysis of protonated zeolites. Top. Catal. 4, 27–42 (1997).
(
10.1023/A:1019188105794
) / Top. Catal. by RA Beyerlein (1997) - Lago, R. M. in Studies in Surface Science and Catalysis eds Murakami Y., Iijima A., Ward J.W. 677–684Elsevier (1986).
-
Lonyi, F. & Lunsford, J. H. The development of strong acidity in hexafluorosilicate-modified Y-type zeolites. J. Catal. 136, 566–577 (1992).
(
10.1016/0021-9517(92)90086-W
) / J. Catal. by F Lonyi (1992) - Mafra, L. & Klinowski, J. Advanced solid-state NMR techniques for the study of molecular sieves John Wiley & Sons Ltd (2013).
-
Joyner, R. W., Smith, A. D., Stockenhuber, M. & van den Berg, M. W. E. The local structure of aluminium sites in zeolites. Phys. Chem. Chem. Phys. 6, 5435–5439 (2004).
(
10.1039/b411001c
) / Phys. Chem. Chem. Phys. by RW Joyner (2004) -
van Bokhoven, J. A., Koningsberger, D. C., Kunkeler, P. & van Bekkum, H. Influence of steam activation on pore structure and acidity of zeolite beta: an Al K-edge XANES study of aluminum coordination. J. Catal. 211, 540–547 (2002).
(
10.1016/S0021-9517(02)93777-2
) / J. Catal. by JA van Bokhoven (2002) -
van Bokhoven, J. A., Sambe, H., Ramaker, D. E. & Koningsberger, D. C. Al K-edge near-edge X-ray absorption fine structure (NEXAPS) study on the coordination structure of aluminum in minerals and Y zeolites. J. Phys. Chem. B 103, 7557–7564 (1999).
(
10.1021/jp990478t
) / J. Phys. Chem. B by JA van Bokhoven (1999) -
van Bokhoven, J. A., van der Eerden, A. M. J. & Koningsberger, D. C. Three-coordinate aluminum in zeolites observed with in situ X-ray absorption near-edge spectroscopy at the Al K-edge: flexibility of aluminum coordinations in zeolites. J. Am. Chem. Soc. 125, 7435–7442 (2003).
(
10.1021/ja0292905
) / J. Am. Chem. Soc. by JA van Bokhoven (2003) -
van Bokhoven, J. A., van der Eerden, A. M. J. & Prins, R. Local structure of the zeolitic catalytically active site during reaction. J. Am. Chem. Soc. 126, 4506–4507 (2004).
(
10.1021/ja031755j
) / J. Am. Chem. Soc. by JA van Bokhoven (2004) -
van Bokhoven, J. A. et al. Determining the aluminium occupancy on the active T-sites in zeolites using X-ray standing waves. Nat. Mater. 7, 551–555 (2008).
(
10.1038/nmat2220
) / Nat. Mater. by JA van Bokhoven (2008) -
Aramburo, L. R. et al. X-ray Imaging of zeolite particles at the nanoscale: influence of steaming on the state of aluminum and the methanol-to-olefin reaction. Angew. Chem. Int. Ed. 51, 3616–3619 (2012).
(
10.1002/anie.201109026
) / Angew. Chem. Int. Ed. by LR Aramburo (2012) -
Aramburo, L. R. et al. 3D nanoscale chemical imaging of the distribution of aluminum coordination environments in zeolites with soft X-ray microscopy. ChemPhysChem 14, 496–499 (2013).
(
10.1002/cphc.201201015
) / ChemPhysChem by LR Aramburo (2013) -
Aramburo, L. R. et al. The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: the influence of the zeolite architecture. Chem. Eur. J. 17, 13773–13781 (2011).
(
10.1002/chem.201101361
) / Chem. Eur. J. by LR Aramburo (2011) -
Collignon, F., Jacobs, P. A., Grobet, P. & Poncelet, G. Investigation of the coordination state of aluminum in beta zeolites by X-ray photoelectron spectroscopy. J. Phys. Chem. B 105, 6812–6816 (2001).
(
10.1021/jp0106202
) / J. Phys. Chem. B by F Collignon (2001) -
Miller, M. K. & Forbes, R. G. Atom probe tomography. Mater. Charact. 60, 461–469 (2009).
(
10.1016/j.matchar.2009.02.007
) / Mater. Charact. by MK Miller (2009) -
Larson, D. J., Prosa, T. J., Ulfig, R. M., Geiser, B. P. & Kelly, T. F. Local Electrode Atom Probe Tomography: A User’s Guide Spinger (2013).
(
10.1007/978-1-4614-8721-0
) -
Thompson, K. et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131–139 (2007).
(
10.1016/j.ultramic.2006.06.008
) / Ultramicroscopy by K Thompson (2007) -
Hellman, O. C., Vandenbroucke, J. A., Rusing, J., Isheim, D. & Seidman, D. N. Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437–444 (2000).
(
10.1007/S100050010051
) / Microsc. Microanal. by OC Hellman (2000) -
Philippe, T. et al. Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109, 1304–1309 (2009).
(
10.1016/j.ultramic.2009.06.007
) / Ultramicroscopy by T Philippe (2009) -
Moody, M. P., Stephenson, L. T., Ceguerra, A. V. & Ringer, S. P. Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc. Res. Techniq. 71, 542–550 (2008).
(
10.1002/jemt.20582
) / Microsc. Res. Techniq. by MP Moody (2008) -
Philippe, T., Duguay, S., Grancher, G. & Blavette, D. Point process statistics in atom probe tomography. Ultramicroscopy 132, 114–120 (2013).
(
10.1016/j.ultramic.2012.10.004
) / Ultramicroscopy by T Philippe (2013) -
Devaraj, A., Colby, R., Vurpillot, F. & Thevuthasan, S. Understanding atom probe tomography of oxide-supported metal nanoparticles by correlation with atomic-resolution electron microscopy and field evaporation simulation. J. Phys. Chem. Lett. 5, 1361–1367 (2014).
(
10.1021/jz500259c
) / J. Phys. Chem. Lett. by A Devaraj (2014) -
Vurpillot, F., Bostel, A. & Blavette, D. Trajectory overlaps and local magnification in three-dimensional atom probe. Appl. Phys. Lett. 76, 3127–3129 (2000).
(
10.1063/1.126545
) / Appl. Phys. Lett. by F Vurpillot (2000) -
Gault, B., Moody, M. P., Cairney, J. M. & Ringer, S. P. Atom Probe Microscopy Springer (2012).
(
10.1007/978-1-4614-3436-8
)
Dates
Type | When |
---|---|
Created | 10 years, 1 month ago (July 2, 2015, 6:48 a.m.) |
Deposited | 1 year, 2 months ago (June 9, 2024, 4:27 p.m.) |
Indexed | 1 week, 1 day ago (Aug. 23, 2025, 1:12 a.m.) |
Issued | 10 years, 1 month ago (July 2, 2015) |
Published | 10 years, 1 month ago (July 2, 2015) |
Published Online | 10 years, 1 month ago (July 2, 2015) |
@article{Perea_2015, title={Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8589}, DOI={10.1038/ncomms8589}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Perea, Daniel E. and Arslan, Ilke and Liu, Jia and Ristanović, Zoran and Kovarik, Libor and Arey, Bruce W. and Lercher, Johannes A. and Bare, Simon R. and Weckhuysen, Bert M.}, year={2015}, month=jul }