Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Raty, J. Y., Zhang, W., Luckas, J., Chen, C., Mazzarello, R., Bichara, C., & Wuttig, M. (2015). Aging mechanisms in amorphous phase-change materials. Nature Communications, 6(1).

Authors 7
  1. Jean Yves Raty (first)
  2. Wei Zhang (additional)
  3. Jennifer Luckas (additional)
  4. Chao Chen (additional)
  5. Riccardo Mazzarello (additional)
  6. Christophe Bichara (additional)
  7. Matthias Wuttig (additional)
References 57 Referenced 240
  1. Struik, L. C. E. Physical Aging in Amorphous Polymers and Other Materials Elsevier (1978).
  2. Hodge, I. M. Physical aging in polymer glasses. Science 267, 1945–1947 (1995). (10.1126/science.267.5206.1945) / Science by IM Hodge (1995)
  3. Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005). (10.1126/science.1112217) / Science by RD Priestley (2005)
  4. Fehr, M. et al. Metastable defect formation at microvoids identified as a source of light-induced degradation in a-Si:H. Phys. Rev. Lett. 112, 066403 (2014). (10.1103/PhysRevLett.112.066403) / Phys. Rev. Lett. by M Fehr (2014)
  5. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007). (10.1038/nmat2009) / Nat. Mater. by M Wuttig (2007)
  6. Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010). (10.1021/cr900040x) / Chem. Rev. by S Raoux (2010)
  7. Pirovano, A. et al. Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 714–719 (2004). (10.1109/TED.2004.825805) / IEEE Trans. Electron Devices by A Pirovano (2004)
  8. Ielmini, D., Lacaita, A. L. & Mantegazza, D. Recovery and drift dynamics of resistance and threshold voltages in phase-change memories. IEEE Trans. Electron Devices 54, 308–315 (2007). (10.1109/TED.2006.888752) / IEEE Trans. Electron Devices by D Ielmini (2007)
  9. Karpov, I. V. et al. Fundamental drift of parameters in chalcogenide phase change memory. J. Appl. Phys. 102, 124503 (2007). (10.1063/1.2825650) / J. Appl. Phys. by IV Karpov (2007)
  10. Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932). (10.1021/ja01349a006) / J. Am. Chem. Soc. by WH Zachariasen (1932)
  11. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703–708 (2004). (10.1038/nmat1215) / Nat. Mater. by AV Kolobov (2004)
  12. Matsunaga, T. et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011). (10.1038/nmat2931) / Nat. Mater. by T Matsunaga (2011)
  13. Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013). (10.1038/ncomms3371) / Nat. Commun. by M Salinga (2013)
  14. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008). (10.1038/nmat2226) / Nat. Mater. by K Shportko (2008)
  15. Lencer, D. et al. A map for phase-change materials. Nat. Mater. 7, 972–977 (2008). (10.1038/nmat2330) / Nat. Mater. by D Lencer (2008)
  16. Matsunaga, T. et al. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties. Adv. Fun. Mater. 21, 2232–2239 (2011). (10.1002/adfm.201002274) / Adv. Fun. Mater. by T Matsunaga (2011)
  17. Huang, B. & Robertson, J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B 81, 081204 (2010). (10.1103/PhysRevB.81.081204) / Phys. Rev. B by B Huang (2010)
  18. Akola, J. & Jones, R. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007). (10.1103/PhysRevB.76.235201) / Phys. Rev. B by J Akola (2007)
  19. Micoulaut, M., Raty, J. Y., Otjacques, C. & Bichara, C. Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity. Phys. Rev. B 81, 174206 (2010). (10.1103/PhysRevB.81.174206) / Phys. Rev. B by M Micoulaut (2010)
  20. Caravati, S., Bernasconi, M., Ku¨hne, T. D., Krack, M. & Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 91, 171906 (2007). (10.1063/1.2801626) / Appl. Phys. Lett. by S Caravati (2007)
  21. Kalb, J., Wuttig, M. & Spaepen, F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007). (10.1557/jmr.2007.0103) / J. Mater. Res. by J Kalb (2007)
  22. Zhang, W. et al. How fragility makes phase-change data storage robust: insights from ab initio simulations. Sci. Rep. 4, 6529 (2014). (10.1038/srep06529) / Sci. Rep. by W Zhang (2014)
  23. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991). (10.1063/1.348620) / J. Appl. Phys. by N Yamada (1991)
  24. Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 6, 122–128 (2007). (10.1038/nmat1807) / Nat. Mater. by M Wuttig (2007)
  25. Zhang, W. et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952–956 (2012). (10.1038/nmat3456) / Nat. Mater. by W Zhang (2012)
  26. Madelung, O., Rössler, U. & Schulz, M. e. Landolt-Börnstein Volume III/17E-17F-41C Springer Materials—The Landolt-Börnstein Database .
  27. Robinson, P. M. & Bever, M. B. Trans Met Soc 236, 814 (1966). / Trans Met Soc by PM Robinson (1966)
  28. Finch, C. B. & Wagner, J. B. Determination of the standard free energy of formation of lead selenide. J. Electrochem. Soc. 107, 932–933 (1960). (10.1149/1.2427546) / J. Electrochem. Soc. by CB Finch (1960)
  29. Patnaik, P. Handbook of Inorganic Chemicals McGraw-Hill (2003).
  30. Chandrasekharaiah, M. S. & Margrave, J. L. Enthalpies of formation of solid silicon dichalcogenides. J Phys. Chem. Ref. Data. 23, 499–507 (1994). (10.1063/1.555960) / J Phys. Chem. Ref. Data. by MS Chandrasekharaiah (1994)
  31. Kühne, T., Krack, M., Mohamed, F. & Parrinello, M. Efficient and accurate car-parrinello-like approach to born-oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007). (10.1103/PhysRevLett.98.066401) / Phys. Rev. Lett. by T Kühne (2007)
  32. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k:atomistic simulations of condensed matter systems. Comput. Mol. Sci. 4, 15–25 (2014). (10.1002/wcms.1159) / Comput. Mol. Sci. by J Hutter (2014)
  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  34. Deringer, V. L. et al. Bonding nature of local structural motifs in amorphous GeTe. Angew. Chem. Int. Ed. 53, 10817–10820 (2014). (10.1002/anie.201404223) / Angew. Chem. Int. Ed. by VL Deringer (2014)
  35. Kalb, J., Spaepen, F., Leervad Pedersen, T. P. & Wuttig, M. Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 94, 4908–4912 (2003). (10.1063/1.1610775) / J. Appl. Phys. by J Kalb (2003)
  36. Cho, J.-Y., Yang, T.-Y., Park, Y.-J. & Joo, Y.-C. Study on the resistance drift in amorphous Ge2Sb2Te5 according to defect annihilation and stress relaxation. Electrochem. Solid State Lett. 15, H81–H83 (2012). (10.1149/2.001204esl) / Electrochem. Solid State Lett. by J-Y Cho (2012)
  37. Micoulaut, M. Van der Waals corrections for an improved structural description of telluride based materials. J. Chem. Phys. 138, 061103 (2013). (10.1063/1.4792195) / J. Chem. Phys. by M Micoulaut (2013)
  38. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). (10.1002/jcc.20495) / J. Comput. Chem. by S Grimme (2006)
  39. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010). (10.1103/PhysRevB.82.081101) / Phys. Rev. B by K Lee (2010)
  40. Parthasarathy, G. & Holzapfel, W. B. High pressure structural phase transitions in tellurium. Phys. Rev. B 37, 8499–8501 (1988). (10.1103/PhysRevB.37.8499) / Phys. Rev. B by G Parthasarathy (1988)
  41. Yu, M., Trinkle, D. R. & Martin, R. M. Energy density in density functional theory: Application to crystalline defects and surfaces. Phys. Rev. B 83, 115113 (2011). (10.1103/PhysRevB.83.115113) / Phys. Rev. B by M Yu (2011)
  42. Bichara, C. & Gaspard, J. P. Octahedral structure of liquid GeSb2Te4 alloy: First-principles molecular dynamics study. Phys. Rev. B 75, 060201 (2007). (10.1103/PhysRevB.75.060201) / Phys. Rev. B by C Bichara (2007)
  43. Fantini, P., Brazzelli, S., Cazzini, E. & Mani, A. Band gap widening with time induced by structural relaxation in amorphous Ge2Sb2Te5 films. Appl. Phys. Lett. 100, 013505 (2012). (10.1063/1.3674311) / Appl. Phys. Lett. by P Fantini (2012)
  44. Luckas, J. et al. Defects in amorphous phase-change materials. J. Mater. Res. 28, 1139–1147 (2013). (10.1557/jmr.2013.72) / J. Mater. Res. by J Luckas (2013)
  45. Pan, Y., Inam, F., Zhang, M. & Drabold, D. Atomistic origin of urbach tails in amorphous silicon. Phys. Rev. Lett. 100, 206403 (2008). (10.1103/PhysRevLett.100.206403) / Phys. Rev. Lett. by Y Pan (2008)
  46. Durandurdu, M., Drabold, D. A. & Mousseau, N. Approximate ab initio calculations of electronic structure of amorphous silicon. Phys. Rev. B 62, 15307–15310 (2000). (10.1103/PhysRevB.62.15307) / Phys. Rev. B by M Durandurdu (2000)
  47. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984). (10.1103/PhysRevLett.52.997) / Phys. Rev. Lett. by E Runge (1984)
  48. Malcıoğlu, O. B., Gebauer, R., Rocca, D. & Baroni, S. turbo TDDFT - A code for the simulation of molecular spectra using the Liouville - Lanczos approach to time-dependent density-functional perturbation theory. Comput. Phys. Commun. 182, 1744–1754 (2011). (10.1016/j.cpc.2011.04.020) / Comput. Phys. Commun. by OB Malcıoğlu (2011)
  49. Shaltaf, R., Durgun, E., Raty, J. Y., Ghosez, P. & Gonze, X. Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory. Phys. Rev. B 78, 205203 (2008). (10.1103/PhysRevB.78.205203) / Phys. Rev. B by R Shaltaf (2008)
  50. Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997). (10.1103/PhysRevB.55.10355) / Phys. Rev. B by X Gonze (1997)
  51. Mitrofanov, K. V. et al. Ge L3-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge2Sb2Te5. J. Appl. Phys. 115, 173501 (2014). (10.1063/1.4874415) / J. Appl. Phys. by KV Mitrofanov (2014)
  52. Fantini, P., Ferro, M., Calderoni, A. & Brazzelli, S. Disorder enhancement due to structural relaxation in amorphous Ge2Sb2Te5. Appl. Phys. Lett. 100, 213506 (2012). (10.1063/1.4720182) / Appl. Phys. Lett. by P Fantini (2012)
  53. VandeVondele, J. et al. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005). (10.1016/j.cpc.2004.12.014) / Comput. Phys. Commun. by J VandeVondele (2005)
  54. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996). (10.1103/PhysRevB.54.1703) / Phys. Rev. B by S Goedecker (1996)
  55. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21, 395502 (2009). / J. Phys.:Condens. Matter by P Giannozzi (2009)
  56. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981). (10.1103/PhysRevB.23.5048) / Phys. Rev. B by JP Perdew (1981)
  57. Jackson, A. B., Amer, N. M., Boccara, A. C. & Fournier, D. Photothermal deflection spectroscopy and detection. Appl. Opt. 20, 1333–1344 (1981). (10.1364/AO.20.001333) / Appl. Opt. by AB Jackson (1981)
Dates
Type When
Created 10 years, 2 months ago (June 24, 2015, 7:59 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:28 a.m.)
Indexed 8 hours, 11 minutes ago (Aug. 27, 2025, 12:34 p.m.)
Issued 10 years, 2 months ago (June 24, 2015)
Published 10 years, 2 months ago (June 24, 2015)
Published Online 10 years, 2 months ago (June 24, 2015)
Funders 0

None

@article{Raty_2015, title={Aging mechanisms in amorphous phase-change materials}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8467}, DOI={10.1038/ncomms8467}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Raty, Jean Yves and Zhang, Wei and Luckas, Jennifer and Chen, Chao and Mazzarello, Riccardo and Bichara, Christophe and Wuttig, Matthias}, year={2015}, month=jun }