Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractWhen a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2−xTe3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer–Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization.

Bibliography

Kandala, A., Richardella, A., Kempinger, S., Liu, C.-X., & Samarth, N. (2015). Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nature Communications, 6(1).

Authors 5
  1. Abhinav Kandala (first)
  2. Anthony Richardella (additional)
  3. Susan Kempinger (additional)
  4. Chao-Xing Liu (additional)
  5. Nitin Samarth (additional)
References 24 Referenced 140
  1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). (10.1103/RevModPhys.82.3045) / Rev. Mod. Phys. by MZ Hasan (2010)
  2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011). (10.1103/RevModPhys.83.1057) / Rev. Mod. Phys. by X-L Qi (2011)
  3. Liu, M. et al. Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108, 036805 (2012). (10.1103/PhysRevLett.108.036805) / Phys. Rev. Lett. by M Liu (2012)
  4. Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012). (10.1038/nphys2388) / Nat. Phys. by JG Checkelsky (2012)
  5. Zhang, D. et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 86, 205127 (2012). (10.1103/PhysRevB.86.205127) / Phys. Rev. B by D Zhang (2012)
  6. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). (10.1126/science.1234414) / Science by C-Z Chang (2013)
  7. Lee, J. S. et al. Ferromagnetism and spin-dependent transport in n-type Mn-Bi2Te3 thin films. Phys. Rev. B 89, 174425 (2014). (10.1103/PhysRevB.89.174425) / Phys. Rev. B by JS Lee (2014)
  8. Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014). (10.1038/nphys3053) / Nat. Phys. by JG Checkelsky (2014)
  9. Kou, X. et al. Scale-invariant dissipationless chiral transport in magnetic topological insulators beyond two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014). (10.1103/PhysRevLett.113.137201) / Phys. Rev. Lett. by X Kou (2014)
  10. Wei, P. et al. Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett. 110, 186807 (2013). (10.1103/PhysRevLett.110.186807) / Phys. Rev. Lett. by P Wei (2013)
  11. Kandala, A. et al. Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Appl. Phys. Lett. 103, 202409 (2013). (10.1063/1.4831987) / Appl. Phys. Lett. by A Kandala (2013)
  12. Lang, M. et al. Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014). (10.1021/nl500973k) / Nano Lett. by M Lang (2014)
  13. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008). (10.1103/PhysRevB.78.195424) / Phys. Rev. B by X-L Qi (2008)
  14. Xu, S.-Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012). (10.1038/nphys2351) / Nat. Phys. by S-Y Xu (2012)
  15. Zhang, F., Kane, C. J. & Mele, E. J. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett. 110, 046404 (2013). (10.1103/PhysRevLett.110.046404) / Phys. Rev. Lett. by F Zhang (2013)
  16. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010). (10.1126/science.1187485) / Science by R Yu (2010)
  17. Thomson, W. On the electro-dynamic qualities of metals:-effects of magnetization on the electric conductivity of Nickel and of Iron. Proc. R. Soc. Lond. 8, 546–550 (1856). / Proc. R. Soc. Lond. by W Thomson (1856)
  18. McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975). (10.1109/TMAG.1975.1058782) / IEEE Trans. Magn. by T McGuire (1975)
  19. Chen, J. et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3 . Phys. Rev. Lett. 105, 176602 (2010). (10.1103/PhysRevLett.105.176602) / Phys. Rev. Lett. by J Chen (2010)
  20. Wang, J. et al. Anomalous edge transport in the quantum anomalous Hall state. Phys. Rev. Lett. 111, 086803 (2013). (10.1103/PhysRevLett.111.086803) / Phys. Rev. Lett. by J Wang (2013)
  21. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015). (10.1038/nmat4204) / Nat. Mater. by C-Z Chang (2015)
  22. Mellnik, A. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014). (10.1038/nature13534) / Nature by A Mellnik (2014)
  23. Fan, Y. et al. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014). (10.1038/nmat3973) / Nat. Mater. by Y Fan (2014)
  24. Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3 . Nat. Nanotech. 9, 218–224 (2014). (10.1038/nnano.2014.16) / Nat. Nanotech. by CH Li (2014)
Dates
Type When
Created 10 years, 1 month ago (July 7, 2015, 8:39 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:30 a.m.)
Indexed 3 days, 23 hours ago (Aug. 29, 2025, 6:38 a.m.)
Issued 10 years, 1 month ago (July 7, 2015)
Published 10 years, 1 month ago (July 7, 2015)
Published Online 10 years, 1 month ago (July 7, 2015)
Funders 0

None

@article{Kandala_2015, title={Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8434}, DOI={10.1038/ncomms8434}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Kandala, Abhinav and Richardella, Anthony and Kempinger, Susan and Liu, Chao-Xing and Samarth, Nitin}, year={2015}, month=jul }