Abstract
AbstractMoonlighting proteins are a subclass of multifunctional proteins whose functions are unrelated. Although they may play important roles in cells, there has been no large-scale method to identify them, nor any effort to characterize them as a group. Here, we propose the first method for the identification of ‘extreme multifunctional’ proteins from an interactome as a first step to characterize moonlighting proteins. By combining network topological information with protein annotations, we identify 430 extreme multifunctional proteins (3% of the human interactome). We show that the candidates form a distinct sub-group of proteins, characterized by specific features, which form a signature of extreme multifunctionality. Overall, extreme multifunctional proteins are enriched in linear motifs and less intrinsically disordered than network hubs. We also provide MoonDB, a database containing information on all the candidates identified in the analysis and a set of manually curated human moonlighting proteins.
Authors
6
- Charles E. Chapple (first)
- Benoit Robisson (additional)
- Lionel Spinelli (additional)
- Céline Guien (additional)
- Emmanuelle Becker (additional)
- Christine Brun (additional)
References
57
Referenced
106
-
Doolittle, W. F. Is junk dna bunk? a critique of encode. Proc. Natl Acad. Sci. USA 110, 5294–5300 (2013).
(
10.1073/pnas.1221376110
) / Proc. Natl Acad. Sci. USA by WF Doolittle (2013) -
Jacq, B. Protein function from the perspective of molecular interactions and genetic networks. Brief. Bioinform. 2, 38–50 (2001).
(
10.1093/bib/2.1.38
) / Brief. Bioinform. by B Jacq (2001) -
Copley, S. D. Moonlighting is mainstream: paradigm adjustment required. Bioessays 34, 578–588 (2012).
(
10.1002/bies.201100191
) / Bioessays by SD Copley (2012) -
Tatum, E. L. & Beadle, G. W. Genetic control of biochemical reactions in neurospora: an ‘aminobenzoicless’ mutant. Proc. Natl Acad. Sci. USA 234–243 (1942).
(
10.1073/pnas.28.6.234
) -
Jeffery, C. J. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11 (1999).
(
10.1016/S0968-0004(98)01335-8
) / Trends Biochem. Sci. by CJ Jeffery (1999) -
Huberts, D. H. E. W., Venselaar, H., Vriend, G., Veenhuis, M. & van der Klei, I. J. The moonlighting function of pyruvate carboxylase resides in the non-catalytic end of the tim barrel. Biochim. Biophys. Acta 1803, 1038–1042 (2010).
(
10.1016/j.bbamcr.2010.03.018
) / Biochim. Biophys. Acta by DHEW Huberts (2010) -
Volz, K. The functional duality of iron regulatory protein 1. Curr. Opin. Struct. Biol. 18, 106–111 (2008).
(
10.1016/j.sbi.2007.12.010
) / Curr. Opin. Struct. Biol. by K Volz (2008) -
Maxwell, C. A., McCarthy, J. & Turley, E. Cell-surface and mitotic-spindle rhamm: moonlighting or dual oncogenic functions? J. Cell Sci. 121, 925–932 (2008).
(
10.1242/jcs.022038
) / J. Cell Sci. by CA Maxwell (2008) -
Jiang, J. et al. Multifunctional proteins bridge mitosis with motility and cancer with inflammation and arthritis. Sci. World J. 10, 1244–1257 (2010).
(
10.1100/tsw.2010.141
) / Sci. World J. by J Jiang (2010) -
Gómez, A., Domedel, N., Cedano, J., Piñol, J. & Querol, E. Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins? Bioinformatics 19, 895–896 (2003).
(
10.1093/bioinformatics/btg111
) / Bioinformatics by A Gómez (2003) -
Khan, I., Chitale, M., Rayon, C. & Kihara, D. Evaluation of function predictions by pfp, esg,and psi-blast for moonlighting proteins. BMC Proc. 6, S5 (2012).
(
10.1186/1753-6561-6-S7-S5
) / BMC Proc. by I Khan (2012) -
Jeffery, C. J. Proteins with neomorphic moonlighting functions in disease. IUBMB Life 63, 489–494 (2011).
(
10.1002/iub.504
) / IUBMB Life by CJ Jeffery (2011) -
Becker, E., Robisson, B., Chapple, C. E., Guénoche, A. & Brun, C. Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28, 84–90 (2012).
(
10.1093/bioinformatics/btr621
) / Bioinformatics by E Becker (2012) -
Ashburner, M. et al. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature Genet. 25, 25–29 (2000).
(
10.1038/75556
) / Nature Genet. by M Ashburner (2000) -
Talavera, D., Robertson, D. L. & Lovell, S. C. Alternative splicing and protein interaction data sets. Nature Biotechnol. 31, 292–293 (2013).
(
10.1038/nbt.2540
) / Nature Biotechnol. by D Talavera (2013) -
Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F. & Jones, D. T. The DISOPRED server for the prediction of protein disorder. Bioinformatics 20, 2138–2139 (2004).
(
10.1093/bioinformatics/bth195
) / Bioinformatics by JJ Ward (2004) -
Oates, M. et al. D2P2: database of disordered protein predictions. Nucleic Acids Res. 41, D508–D516 (2013).
(
10.1093/nar/gks1226
) / Nucleic Acids Res. by M Oates (2013) -
Van Roey, K. et al. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014).
(
10.1021/cr400585q
) / Chem. Rev. by K Van Roey (2014) -
Van Roey, K., Dinkel, H., Weatheritt, R. J., Gibson, T. J. & Davey, N. E. The switches.elm resource: a compendium of conditional regulatory interaction interfaces. Sci. Signal. 6, rs7 (2013).
(
10.1126/scisignal.2003345
) - McKusick-Nathans Institute of Genetic Medicine, J. H. U. Online Mendelian Inheritance in Man, omim (2013). URL http://www.omim.org Accessed on May 2013]. .
-
Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).
(
10.1038/nrc1299
) / Nat. Rev. Cancer by PA Futreal (2004) -
Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).
(
10.1016/j.cell.2014.10.050
) / Cell by T Rolland (2014) -
Zaoui, K., Benseddik, K., Daou, P., Salaün, D. & Badache, A. Erbb2 receptor controls microtubule capture by recruiting acf7 to the plasma membrane of migrating cells. Proc. Natl Acad. Sci. USA 107, 18517–18522 (2010).
(
10.1073/pnas.1000975107
) / Proc. Natl Acad. Sci. USA by K Zaoui (2010) -
Li, L.-Y. et al. Nuclear erbb2 enhances translation and cell growth by activating transcription of ribosomal rna genes. Cancer Res. 71, 4269–4279 (2011).
(
10.1158/0008-5472.CAN-10-3504
) / Cancer Res. by L-Y Li (2011) -
Holzmann, J. et al. Rnase p without rna: identification and functional reconstitution of the human mitochondrial trna processing enzyme. Cell 135, 462–474 (2008).
(
10.1016/j.cell.2008.09.013
) / Cell by J Holzmann (2008) -
Sudol, M. & Harvey, K. F. Modularity in the hippo signaling pathway. Trends Biochem. Sci. 35, 627–633 (2010).
(
10.1016/j.tibs.2010.05.010
) / Trends Biochem. Sci. by M Sudol (2010) -
Monferran, S., Muller, C., Mourey, L., Frit, P. & Salles, B. The membrane-associated form of the dna repair protein ku is involved in cell adhesion to fibronectin. J. Mol. Biol. 337, 503–511 (2004).
(
10.1016/j.jmb.2004.01.057
) / J. Mol. Biol. by S Monferran (2004) -
Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).
(
10.1038/35011540
) / Nature by LH Hartwell (1999) -
Brun, C. et al. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol. 5, R6 (2003).
(
10.1186/gb-2003-5-1-r6
) / Genome Biol. by C Brun (2003) -
Sharan, R., Ulitsky, I. & Shamir, R. Network-based prediction of protein function. Mol. Syst. Biol. 3, 88 (2007).
(
10.1038/msb4100129
) / Mol. Syst. Biol. by R Sharan (2007) -
Gómez, A. et al. Do protein-protein interaction databases identify moonlighting proteins? Mol. Biosyst. 7, 2379–2382 (2011).
(
10.1039/c1mb05180f
) / Mol. Biosyst. by A Gómez (2011) -
Tompa, P., Szàsz, C. & Buday, L. Structural disorder throws new light on moonlighting. Trends Biochem. Sci. 30, 484–489 (2005).
(
10.1016/j.tibs.2005.07.008
) / Trends Biochem. Sci. by P Tompa (2005) -
Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M. & Uversky, V. N. Flexible nets. the roles of intrinsic disorder in protein interaction networks. FEBS J. 272, 5129–5148 (2005).
(
10.1111/j.1742-4658.2005.04948.x
) / FEBS J. by AK Dunker (2005) -
Patil, A., Kinoshita, K. & Nakamura, H. Domain distribution and intrinsic disorder in hubs in the human protein-protein interaction network. Protein Sci. 19, 1461–1468 (2010).
(
10.1002/pro.425
) / Protein Sci. by A Patil (2010) - Hernández, S. et al. Do moonlighting proteins belong to the intrinsically disordered protein class? Proteomics Bioinformatics 5, 262–264 (2012). / Proteomics Bioinformatics by S Hernández (2012)
-
Davey, N. E. et al. Attributes of short linear motifs. Mol. Biosyst. 8, 268–281 (2012).
(
10.1039/C1MB05231D
) / Mol. Biosyst. by NE Davey (2012) -
Fuxreiter, M., Tompa, P. & Simon, I. Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23, 950–956 (2007).
(
10.1093/bioinformatics/btm035
) / Bioinformatics by M Fuxreiter (2007) -
Aranda, B. et al. Psicquic and psiscore: accessing and scoring molecular interactions. Nat. Methods 8, 528–529 (2011).
(
10.1038/nmeth.1637
) / Nat. Methods by B Aranda (2011) -
Prieto, C. & Rivas, J. D. L. Apid: Agile protein interaction dataanalyzer. Nucleic Acids Res. 34, W298–W302 (2006).
(
10.1093/nar/gkl128
) / Nucleic Acids Res. by C Prieto (2006) -
Chatr-Aryamontri, A. et al. The biogrid interaction database: 2013 update. Nucleic Acids Res. 41, D816–D823 (2013).
(
10.1093/nar/gks1158
) / Nucleic Acids Res. by A Chatr-Aryamontri (2013) -
Kerrien, S. et al. The intact molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012).
(
10.1093/nar/gkr1088
) / Nucleic Acids Res. by S Kerrien (2012) -
Salwinski, L. et al. The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).
(
10.1093/nar/gkh086
) / Nucleic Acids Res. by L Salwinski (2004) -
Ceol, A. et al. Mint, the molecular interaction database: 2009 update. Nucleic Acids Res. 38, D532–D539 (2010).
(
10.1093/nar/gkp983
) / Nucleic Acids Res. by A Ceol (2010) -
Chautard, E., Ballut, L., Thierry-Mieg, N. & Ricard-Blum, S. Matrixdb, a database focused on extracellular protein-protein and protein-carbohydrate interactions. Bioinformatics 25, 690–691 (2009).
(
10.1093/bioinformatics/btp025
) / Bioinformatics by E Chautard (2009) -
Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–D697 (2011).
(
10.1093/nar/gkq1018
) / Nucleic Acids Res. by D Croft (2011) -
Lynn, D. J. et al. Innatedb: facilitating systems-level analyses of the mammalian innate immune response. Mol. Syst. Biol. 4, 218 (2008).
(
10.1038/msb.2008.55
) / Mol. Syst. Biol. by DJ Lynn (2008) -
Elkon, R. et al. Spike-a database, visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics 9, 110 (2008).
(
10.1186/1471-2105-9-110
) / BMC Bioinformatics by R Elkon (2008) -
Lange, P. F. & Overall, C. M. Topfind, a knowledgebase linking protein termini with function. Nat. Methods 8, 703–704 (2011).
(
10.1038/nmeth.1669
) / Nat. Methods by PF Lange (2011) -
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. Cd-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
(
10.1093/bioinformatics/bts565
) / Bioinformatics by L Fu (2012) -
Skunca, N., Altenhoff, A. & Dessimoz, C. Quality of computationally inferred gene ontology annotations. PLoS Comp. 8, e1002533 (2012).
(
10.1371/journal.pcbi.1002533
) / PLoS Comp. by N Skunca (2012) - Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems, 1695 (2006). / InterJournal, by G Csardi (2006)
-
Mistry, J., Bateman, A. & Finn, R. D. Predicting active site residue annotations in the pfam database. BMC Bioinformatics 8, 298–312 (2007).
(
10.1186/1471-2105-8-298
) / BMC Bioinformatics by J Mistry (2007) -
Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004).
(
10.1073/pnas.0400782101
) / Proc. Natl Acad. Sci. USA by AI Su (2004) -
Xue, Y. et al. Gps 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell Proteomics 7, 1598–1608 (2008).
(
10.1074/mcp.M700574-MCP200
) / Mol. Cell Proteomics by Y Xue (2008) -
Notredame, C., Higgins, D. G. & Heringa, J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).
(
10.1006/jmbi.2000.4042
) / J. Mol. Biol. by C Notredame (2000) -
Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).
(
10.1093/nar/gkt1196
) / Nucleic Acids Res. by P Flicek (2014) -
Puntervoll, P. et al. Elm server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res. 31, 3625–3630 (2003).
(
10.1093/nar/gkg545
) / Nucleic Acids Res. by P Puntervoll (2003)
Dates
Type | When |
---|---|
Created | 10 years, 2 months ago (June 9, 2015, 11:51 a.m.) |
Deposited | 2 years, 8 months ago (Jan. 5, 2023, 6:22 a.m.) |
Indexed | 1 week, 6 days ago (Aug. 23, 2025, 9:17 p.m.) |
Issued | 10 years, 2 months ago (June 9, 2015) |
Published | 10 years, 2 months ago (June 9, 2015) |
Published Online | 10 years, 2 months ago (June 9, 2015) |
@article{Chapple_2015, title={Extreme multifunctional proteins identified from a human protein interaction network}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8412}, DOI={10.1038/ncomms8412}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Chapple, Charles E. and Robisson, Benoit and Spinelli, Lionel and Guien, Céline and Becker, Emmanuelle and Brun, Christine}, year={2015}, month=jun }