Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractMoonlighting proteins are a subclass of multifunctional proteins whose functions are unrelated. Although they may play important roles in cells, there has been no large-scale method to identify them, nor any effort to characterize them as a group. Here, we propose the first method for the identification of ‘extreme multifunctional’ proteins from an interactome as a first step to characterize moonlighting proteins. By combining network topological information with protein annotations, we identify 430 extreme multifunctional proteins (3% of the human interactome). We show that the candidates form a distinct sub-group of proteins, characterized by specific features, which form a signature of extreme multifunctionality. Overall, extreme multifunctional proteins are enriched in linear motifs and less intrinsically disordered than network hubs. We also provide MoonDB, a database containing information on all the candidates identified in the analysis and a set of manually curated human moonlighting proteins.

Bibliography

Chapple, C. E., Robisson, B., Spinelli, L., Guien, C., Becker, E., & Brun, C. (2015). Extreme multifunctional proteins identified from a human protein interaction network. Nature Communications, 6(1).

Authors 6
  1. Charles E. Chapple (first)
  2. Benoit Robisson (additional)
  3. Lionel Spinelli (additional)
  4. Céline Guien (additional)
  5. Emmanuelle Becker (additional)
  6. Christine Brun (additional)
References 57 Referenced 106
  1. Doolittle, W. F. Is junk dna bunk? a critique of encode. Proc. Natl Acad. Sci. USA 110, 5294–5300 (2013). (10.1073/pnas.1221376110) / Proc. Natl Acad. Sci. USA by WF Doolittle (2013)
  2. Jacq, B. Protein function from the perspective of molecular interactions and genetic networks. Brief. Bioinform. 2, 38–50 (2001). (10.1093/bib/2.1.38) / Brief. Bioinform. by B Jacq (2001)
  3. Copley, S. D. Moonlighting is mainstream: paradigm adjustment required. Bioessays 34, 578–588 (2012). (10.1002/bies.201100191) / Bioessays by SD Copley (2012)
  4. Tatum, E. L. & Beadle, G. W. Genetic control of biochemical reactions in neurospora: an ‘aminobenzoicless’ mutant. Proc. Natl Acad. Sci. USA 234–243 (1942). (10.1073/pnas.28.6.234)
  5. Jeffery, C. J. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11 (1999). (10.1016/S0968-0004(98)01335-8) / Trends Biochem. Sci. by CJ Jeffery (1999)
  6. Huberts, D. H. E. W., Venselaar, H., Vriend, G., Veenhuis, M. & van der Klei, I. J. The moonlighting function of pyruvate carboxylase resides in the non-catalytic end of the tim barrel. Biochim. Biophys. Acta 1803, 1038–1042 (2010). (10.1016/j.bbamcr.2010.03.018) / Biochim. Biophys. Acta by DHEW Huberts (2010)
  7. Volz, K. The functional duality of iron regulatory protein 1. Curr. Opin. Struct. Biol. 18, 106–111 (2008). (10.1016/j.sbi.2007.12.010) / Curr. Opin. Struct. Biol. by K Volz (2008)
  8. Maxwell, C. A., McCarthy, J. & Turley, E. Cell-surface and mitotic-spindle rhamm: moonlighting or dual oncogenic functions? J. Cell Sci. 121, 925–932 (2008). (10.1242/jcs.022038) / J. Cell Sci. by CA Maxwell (2008)
  9. Jiang, J. et al. Multifunctional proteins bridge mitosis with motility and cancer with inflammation and arthritis. Sci. World J. 10, 1244–1257 (2010). (10.1100/tsw.2010.141) / Sci. World J. by J Jiang (2010)
  10. Gómez, A., Domedel, N., Cedano, J., Piñol, J. & Querol, E. Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins? Bioinformatics 19, 895–896 (2003). (10.1093/bioinformatics/btg111) / Bioinformatics by A Gómez (2003)
  11. Khan, I., Chitale, M., Rayon, C. & Kihara, D. Evaluation of function predictions by pfp, esg,and psi-blast for moonlighting proteins. BMC Proc. 6, S5 (2012). (10.1186/1753-6561-6-S7-S5) / BMC Proc. by I Khan (2012)
  12. Jeffery, C. J. Proteins with neomorphic moonlighting functions in disease. IUBMB Life 63, 489–494 (2011). (10.1002/iub.504) / IUBMB Life by CJ Jeffery (2011)
  13. Becker, E., Robisson, B., Chapple, C. E., Guénoche, A. & Brun, C. Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28, 84–90 (2012). (10.1093/bioinformatics/btr621) / Bioinformatics by E Becker (2012)
  14. Ashburner, M. et al. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature Genet. 25, 25–29 (2000). (10.1038/75556) / Nature Genet. by M Ashburner (2000)
  15. Talavera, D., Robertson, D. L. & Lovell, S. C. Alternative splicing and protein interaction data sets. Nature Biotechnol. 31, 292–293 (2013). (10.1038/nbt.2540) / Nature Biotechnol. by D Talavera (2013)
  16. Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F. & Jones, D. T. The DISOPRED server for the prediction of protein disorder. Bioinformatics 20, 2138–2139 (2004). (10.1093/bioinformatics/bth195) / Bioinformatics by JJ Ward (2004)
  17. Oates, M. et al. D2P2: database of disordered protein predictions. Nucleic Acids Res. 41, D508–D516 (2013). (10.1093/nar/gks1226) / Nucleic Acids Res. by M Oates (2013)
  18. Van Roey, K. et al. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014). (10.1021/cr400585q) / Chem. Rev. by K Van Roey (2014)
  19. Van Roey, K., Dinkel, H., Weatheritt, R. J., Gibson, T. J. & Davey, N. E. The switches.elm resource: a compendium of conditional regulatory interaction interfaces. Sci. Signal. 6, rs7 (2013). (10.1126/scisignal.2003345)
  20. McKusick-Nathans Institute of Genetic Medicine, J. H. U. Online Mendelian Inheritance in Man, omim (2013). URL http://www.omim.org Accessed on May 2013]. .
  21. Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004). (10.1038/nrc1299) / Nat. Rev. Cancer by PA Futreal (2004)
  22. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014). (10.1016/j.cell.2014.10.050) / Cell by T Rolland (2014)
  23. Zaoui, K., Benseddik, K., Daou, P., Salaün, D. & Badache, A. Erbb2 receptor controls microtubule capture by recruiting acf7 to the plasma membrane of migrating cells. Proc. Natl Acad. Sci. USA 107, 18517–18522 (2010). (10.1073/pnas.1000975107) / Proc. Natl Acad. Sci. USA by K Zaoui (2010)
  24. Li, L.-Y. et al. Nuclear erbb2 enhances translation and cell growth by activating transcription of ribosomal rna genes. Cancer Res. 71, 4269–4279 (2011). (10.1158/0008-5472.CAN-10-3504) / Cancer Res. by L-Y Li (2011)
  25. Holzmann, J. et al. Rnase p without rna: identification and functional reconstitution of the human mitochondrial trna processing enzyme. Cell 135, 462–474 (2008). (10.1016/j.cell.2008.09.013) / Cell by J Holzmann (2008)
  26. Sudol, M. & Harvey, K. F. Modularity in the hippo signaling pathway. Trends Biochem. Sci. 35, 627–633 (2010). (10.1016/j.tibs.2010.05.010) / Trends Biochem. Sci. by M Sudol (2010)
  27. Monferran, S., Muller, C., Mourey, L., Frit, P. & Salles, B. The membrane-associated form of the dna repair protein ku is involved in cell adhesion to fibronectin. J. Mol. Biol. 337, 503–511 (2004). (10.1016/j.jmb.2004.01.057) / J. Mol. Biol. by S Monferran (2004)
  28. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999). (10.1038/35011540) / Nature by LH Hartwell (1999)
  29. Brun, C. et al. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol. 5, R6 (2003). (10.1186/gb-2003-5-1-r6) / Genome Biol. by C Brun (2003)
  30. Sharan, R., Ulitsky, I. & Shamir, R. Network-based prediction of protein function. Mol. Syst. Biol. 3, 88 (2007). (10.1038/msb4100129) / Mol. Syst. Biol. by R Sharan (2007)
  31. Gómez, A. et al. Do protein-protein interaction databases identify moonlighting proteins? Mol. Biosyst. 7, 2379–2382 (2011). (10.1039/c1mb05180f) / Mol. Biosyst. by A Gómez (2011)
  32. Tompa, P., Szàsz, C. & Buday, L. Structural disorder throws new light on moonlighting. Trends Biochem. Sci. 30, 484–489 (2005). (10.1016/j.tibs.2005.07.008) / Trends Biochem. Sci. by P Tompa (2005)
  33. Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M. & Uversky, V. N. Flexible nets. the roles of intrinsic disorder in protein interaction networks. FEBS J. 272, 5129–5148 (2005). (10.1111/j.1742-4658.2005.04948.x) / FEBS J. by AK Dunker (2005)
  34. Patil, A., Kinoshita, K. & Nakamura, H. Domain distribution and intrinsic disorder in hubs in the human protein-protein interaction network. Protein Sci. 19, 1461–1468 (2010). (10.1002/pro.425) / Protein Sci. by A Patil (2010)
  35. Hernández, S. et al. Do moonlighting proteins belong to the intrinsically disordered protein class? Proteomics Bioinformatics 5, 262–264 (2012). / Proteomics Bioinformatics by S Hernández (2012)
  36. Davey, N. E. et al. Attributes of short linear motifs. Mol. Biosyst. 8, 268–281 (2012). (10.1039/C1MB05231D) / Mol. Biosyst. by NE Davey (2012)
  37. Fuxreiter, M., Tompa, P. & Simon, I. Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23, 950–956 (2007). (10.1093/bioinformatics/btm035) / Bioinformatics by M Fuxreiter (2007)
  38. Aranda, B. et al. Psicquic and psiscore: accessing and scoring molecular interactions. Nat. Methods 8, 528–529 (2011). (10.1038/nmeth.1637) / Nat. Methods by B Aranda (2011)
  39. Prieto, C. & Rivas, J. D. L. Apid: Agile protein interaction dataanalyzer. Nucleic Acids Res. 34, W298–W302 (2006). (10.1093/nar/gkl128) / Nucleic Acids Res. by C Prieto (2006)
  40. Chatr-Aryamontri, A. et al. The biogrid interaction database: 2013 update. Nucleic Acids Res. 41, D816–D823 (2013). (10.1093/nar/gks1158) / Nucleic Acids Res. by A Chatr-Aryamontri (2013)
  41. Kerrien, S. et al. The intact molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012). (10.1093/nar/gkr1088) / Nucleic Acids Res. by S Kerrien (2012)
  42. Salwinski, L. et al. The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004). (10.1093/nar/gkh086) / Nucleic Acids Res. by L Salwinski (2004)
  43. Ceol, A. et al. Mint, the molecular interaction database: 2009 update. Nucleic Acids Res. 38, D532–D539 (2010). (10.1093/nar/gkp983) / Nucleic Acids Res. by A Ceol (2010)
  44. Chautard, E., Ballut, L., Thierry-Mieg, N. & Ricard-Blum, S. Matrixdb, a database focused on extracellular protein-protein and protein-carbohydrate interactions. Bioinformatics 25, 690–691 (2009). (10.1093/bioinformatics/btp025) / Bioinformatics by E Chautard (2009)
  45. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–D697 (2011). (10.1093/nar/gkq1018) / Nucleic Acids Res. by D Croft (2011)
  46. Lynn, D. J. et al. Innatedb: facilitating systems-level analyses of the mammalian innate immune response. Mol. Syst. Biol. 4, 218 (2008). (10.1038/msb.2008.55) / Mol. Syst. Biol. by DJ Lynn (2008)
  47. Elkon, R. et al. Spike-a database, visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics 9, 110 (2008). (10.1186/1471-2105-9-110) / BMC Bioinformatics by R Elkon (2008)
  48. Lange, P. F. & Overall, C. M. Topfind, a knowledgebase linking protein termini with function. Nat. Methods 8, 703–704 (2011). (10.1038/nmeth.1669) / Nat. Methods by PF Lange (2011)
  49. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. Cd-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012). (10.1093/bioinformatics/bts565) / Bioinformatics by L Fu (2012)
  50. Skunca, N., Altenhoff, A. & Dessimoz, C. Quality of computationally inferred gene ontology annotations. PLoS Comp. 8, e1002533 (2012). (10.1371/journal.pcbi.1002533) / PLoS Comp. by N Skunca (2012)
  51. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems, 1695 (2006). / InterJournal, by G Csardi (2006)
  52. Mistry, J., Bateman, A. & Finn, R. D. Predicting active site residue annotations in the pfam database. BMC Bioinformatics 8, 298–312 (2007). (10.1186/1471-2105-8-298) / BMC Bioinformatics by J Mistry (2007)
  53. Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004). (10.1073/pnas.0400782101) / Proc. Natl Acad. Sci. USA by AI Su (2004)
  54. Xue, Y. et al. Gps 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell Proteomics 7, 1598–1608 (2008). (10.1074/mcp.M700574-MCP200) / Mol. Cell Proteomics by Y Xue (2008)
  55. Notredame, C., Higgins, D. G. & Heringa, J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000). (10.1006/jmbi.2000.4042) / J. Mol. Biol. by C Notredame (2000)
  56. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014). (10.1093/nar/gkt1196) / Nucleic Acids Res. by P Flicek (2014)
  57. Puntervoll, P. et al. Elm server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res. 31, 3625–3630 (2003). (10.1093/nar/gkg545) / Nucleic Acids Res. by P Puntervoll (2003)
Dates
Type When
Created 10 years, 2 months ago (June 9, 2015, 11:51 a.m.)
Deposited 2 years, 8 months ago (Jan. 5, 2023, 6:22 a.m.)
Indexed 1 week, 6 days ago (Aug. 23, 2025, 9:17 p.m.)
Issued 10 years, 2 months ago (June 9, 2015)
Published 10 years, 2 months ago (June 9, 2015)
Published Online 10 years, 2 months ago (June 9, 2015)
Funders 0

None

@article{Chapple_2015, title={Extreme multifunctional proteins identified from a human protein interaction network}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8412}, DOI={10.1038/ncomms8412}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Chapple, Charles E. and Robisson, Benoit and Spinelli, Lionel and Guien, Céline and Becker, Emmanuelle and Brun, Christine}, year={2015}, month=jun }