Abstract
AbstractThe desire for higher information capacities drives the components of electronic devices to ever smaller dimensions so that device properties are determined increasingly more by interfaces than by the bulk structure of the constituent materials. Spintronic devices, especially, benefit from the presence of interfaces—the reduced structural symmetry creates emergent spin–orbit fields that offer novel possibilities to control device functionalities. But where does the bulk end, and the interface begin? Here we trace the interface-to-bulk transition, and follow the emergence of the interfacial spin–orbit fields, in the conducting states of a few monolayers of iron on top of gallium arsenide. We observe the transition from the interface- to bulk-induced lateral crystalline magnetoanisotropy, each having a characteristic symmetry pattern, as the epitaxially grown iron channel increases from four to eight monolayers. Setting the upper limit on the width of the interface-imprinted conducting channel is an important step towards an active control of interfacial spin–orbit fields.
References
40
Referenced
31
-
Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
(
10.1103/RevModPhys.76.323
) / Rev. Mod. Phys. by I Žutić (2004) -
Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656–659 (2009).
(
10.1038/nphys1362
) / Nat. Phys. by A Chernyshov (2009) -
Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009).
(
10.1038/nnano.2008.406
) / Nat. Nanotechnol. by T Maruyama (2009) -
Fang, D. et al. Spin-orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413–417 (2011).
(
10.1038/nnano.2011.68
) / Nat. Nanotechnol. by D Fang (2011) -
Fan, X. et al. Observation of the nonlocal spin-orbital effective field. Nat. Commun. 4, 1799 (2013).
(
10.1038/ncomms2709
) / Nat. Commun. by X Fan (2013) -
Fan, X. et al. Quantifying interface and bulk contributions to spin-orbit torque in magnetic bilayers. Nat. Commun. 5, 3042 (2014).
(
10.1038/ncomms4042
) / Nat. Commun. by X Fan (2014) -
Garello, K. et al. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).
(
10.1038/nnano.2013.145
) / Nat. Nanotechnol. by K Garello (2013) -
Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).
(
10.1038/nmat2613
) / Nat. Mater. by IM Miron (2010) -
Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the Hall effect. Phys. Rev. Lett. 109, 096602 (2012).
(
10.1103/PhysRevLett.109.096602
) / Phys. Rev. Lett. by L Liu (2012) -
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
(
10.1126/science.1218197
) / Science by L Liu (2012) - Rashba, E. I. Properties of semiconductors with an extremum loop. 1. cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Fiz. Tverd. Tela (Leningrad) 2, 1224–1238 (1960). / Fiz. Tverd. Tela (Leningrad) by EI Rashba (1960)
-
Moser, J. et al. Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions. Phys. Rev. Lett. 99, 056601 (2007).
(
10.1103/PhysRevLett.99.056601
) / Phys. Rev. Lett. by J Moser (2007) -
Uemura, T., Imai, Y., Harada, M., Matsuda, K. & Yamamoto, M. Tunneling anisotropic magnetoresistance in epitaxial CoFe/n-GaAs junctions. Appl. Phys. Lett. 94, 182502 (2009).
(
10.1063/1.3130092
) / Appl. Phys. Lett. by T Uemura (2009) -
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
(
10.1038/nature10309
) / Nature by IM Miron (2011) -
Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. P. P. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).
(
10.1038/nnano.2013.102
) / Nat. Nanotechnol. by K-S Ryu (2013) -
Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).
(
10.1038/nmat3675
) / Nat. Mater. by S Emori (2013) -
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
(
10.1038/nphys2045
) / Nat. Phys. by S Heinze (2011) -
Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).
(
10.1126/science.1259327
) / Science by S Nadj-Perge (2014) -
Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev 100, 580–586 (1955).
(
10.1103/PhysRev.100.580
) / Phys. Rev by G Dresselhaus (1955) - Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Žutić, I. Semiconductor spintronics. Acta Phys. Slov. 57, 565–907 (2007). / Acta Phys. Slov. by J Fabian (2007)
- Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984). / JETP Lett. by YA Bychkov (1984)
-
Wastlbauer, G. & Bland, J. A. C. Structural and magnetic properties of ultrathin epitaxial Fe films on GaAs(001) and related semiconductor substrates. Adv. Phys. 54, 137–219 (2005).
(
10.1080/00018730500112000
) / Adv. Phys. by G Wastlbauer (2005) -
Urban, R., Woltersdorf, G. & Heinrich, B. Gilbert damping in single and multilayer ultrathin films: role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001).
(
10.1103/PhysRevLett.87.217204
) / Phys. Rev. Lett. by R Urban (2001) -
Tondra, M. et al. Thickness dependence of the anisotropic magnetoresistance in epitaxial iron films. J. Appl. Phys. 73, 6393–6395 (1993).
(
10.1063/1.352607
) / J. Appl. Phys. by M Tondra (1993) -
Riggs, K. T., Dahlberg, E. D. & Prinz, G. A. First-order magnetic-field-induced phase transition in epitaxial iron films studied by magnetoresistance. Phys. Rev. B 41, 7088–7095 (1990).
(
10.1103/PhysRevB.41.7088
) / Phys. Rev. B by KT Riggs (1990) -
Gmitra, M., Matos-Abiague, A., Draxl, C. & Fabian, J. Magnetic control of spin-orbit fields: a first-principles study of Fe/GaAs Junctions. Phys. Rev. Lett. 111, 036603 (2013).
(
10.1103/PhysRevLett.111.036603
) / Phys. Rev. Lett. by M Gmitra (2013) -
Putz, S., Gmitra, M. & Fabian, J. Anisotropic optical properties of Fe/GaAs(001) nanolayers from first principles. Phys. Rev. B 90, 045315 (2014).
(
10.1103/PhysRevB.90.045315
) / Phys. Rev. B by S Putz (2014) -
Limmer, W. et al. Angle-dependent magnetotransport in cubic and tetragonal ferromagnets: application to (001)- and (113)A-oriented (Ga,Mn)As. Phys. Rev. B 77, 205205 (2006).
(
10.1103/PhysRevB.74.205205
) / Phys. Rev. B by W Limmer (2006) -
Limmer, W. et al. Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive- to tensile-strained (Ga,Mn)As layers. Phys. Rev. B 77, 205210 (2008).
(
10.1103/PhysRevB.77.205210
) / Phys. Rev. B by W Limmer (2008) -
Rushforth, A. W. et al. Anisotropic magnetoresistance components in (Ga,Mn)As. Phys. Rev. Lett. 99, 146207 (2007).
(
10.1103/PhysRevLett.99.147207
) / Phys. Rev. Lett. by AW Rushforth (2007) -
De Ranieri, A. et al. Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As. New J. Phys. 10, 065003 (2008).
(
10.1088/1367-2630/10/6/065003
) / New J. Phys. by A De Ranieri (2008) -
Uemura, T., Harada, M., Matsuda, K. & Yamamoto, M. Internal electric field influence on tunneling anisotropic magnetoresistance in epitaxial ferromagnet/n-GaAs junctions. Appl. Phys. Lett. 96, 252106 (2010).
(
10.1063/1.3456558
) / Appl. Phys. Lett. by T Uemura (2010) -
Trushin, M. & Schliemann, J. Anisotropic current-induced spin accumulation in the two-dimensional electron gas with spin-orbit coupling. Phys. Rev. B 75, 155323 (2007).
(
10.1103/PhysRevB.75.155323
) / Phys. Rev. B by M Trushin (2007) -
Chalaev, O. & Loss, D. Spin-orbit-induced anisotropic conductivity of a disordered two-dimensional electron gas. Phys. Rev. B 80, 035305 (2009).
(
10.1103/PhysRevB.80.035305
) / Phys. Rev. B by O Chalaev (2009) -
Matos-Abiague, A. & Fabian, J. Anisotropic tunneling magnetoresistance and tunneling anisotropic magnetoresistance: spin-orbit coupling in magnetic tunnel junctions. Phys. Rev. B 79, 155303 (2009).
(
10.1103/PhysRevB.79.155303
) / Phys. Rev. B by A Matos-Abiague (2009) - Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. Wien2k, an augmented plane wave+local orbitals program for calculating crystal properties Vienna University of Technology (2001).
-
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
(
10.1103/PhysRev.136.B864
) / Phys. Rev. by P Hohenberg (1964) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Shiraishi, K. A new slab model approach for electronic structure calculation of polar semiconductor surface. J. Phys. Soc. Jpn 59, 3455–3458 (1990).
(
10.1143/JPSJ.59.3455
) / J. Phys. Soc. Jpn by K Shiraishi (1990) -
Huang, X., Lindgren, E. & Chelikowsky, J. R. Surface passivation method for semiconductor nanostructures. Phys. Rev. B 71, 165328 (2005).
(
10.1103/PhysRevB.71.165328
) / Phys. Rev. B by X Huang (2005)
Dates
Type | When |
---|---|
Created | 10 years, 2 months ago (June 8, 2015, 6:06 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 6:24 a.m.) |
Indexed | 3 weeks, 4 days ago (Aug. 6, 2025, 9:40 a.m.) |
Issued | 10 years, 2 months ago (June 8, 2015) |
Published | 10 years, 2 months ago (June 8, 2015) |
Published Online | 10 years, 2 months ago (June 8, 2015) |
@article{Hupfauer_2015, title={Emergence of spin–orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8374}, DOI={10.1038/ncomms8374}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Hupfauer, T. and Matos-Abiague, A. and Gmitra, M. and Schiller, F. and Loher, J. and Bougeard, D. and Back, C. H. and Fabian, J. and Weiss, D.}, year={2015}, month=jun }