Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractRecent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction.

Bibliography

Senkov, O. N., Miller, J. D., Miracle, D. B., & Woodward, C. (2015). Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 6(1).

Authors 4
  1. O.N. Senkov (first)
  2. J.D. Miller (additional)
  3. D.B. Miracle (additional)
  4. C. Woodward (additional)
References 30 Referenced 714
  1. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004) . (10.1002/adem.200300567) / Adv. Eng. Mater. by J-W Yeh (2004)
  2. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mat. Sci. Eng. A 375-377, 213–218 (2004) . (10.1016/j.msea.2003.10.257) / Mat. Sci. Eng. A by B Cantor (2004)
  3. Green, M., Takeuchi, I. & Hattrick-Simpers, J. R. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101–231153 (2013) . (10.1063/1.4803530) / J. Appl. Phys. by M Green (2013)
  4. Potyrailo, R. et al. Cominatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13, 579–633 (2011) . (10.1021/co200007w) / ACS Comb. Sci. by R Potyrailo (2011)
  5. Potyrailo, R. & Takeuchi, I. Role of high-throughput characterization tools in combinatorial materials science. Meas. Sci. Technol. 16, 1–4 (2005) . (10.1088/0957-0233/16/1/001) / Meas. Sci. Technol. by R Potyrailo (2005)
  6. Rajan, K. Combinatorial materials sciences: experimental strategies for accelerated knowledge discovery. Annu. Rev. Mater. Res. 38, 299–322 (2008) . (10.1146/annurev.matsci.38.060407.130217) / Annu. Rev. Mater. Res. by K Rajan (2008)
  7. Zhao, J.-C. Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog. Mater. Sci. 51, 557–631 (2006) . (10.1016/j.pmatsci.2005.10.001) / Prog. Mater. Sci. by J-C Zhao (2006)
  8. Miracle, D. B. et al. Exploration and development of high entropy alloys for structural applications. Entropy 16, 494–525 (2014) . (10.3390/e16010494) / Entropy by DB Miracle (2014)
  9. Zhang, L.-S., Ma, G.-L., Fu, L.-C. & Tian, J.-Y. Recent progress in high-entropy alloys. Adv. Mater. Res. 631-632, 227–232 (2013) . (10.4028/www.scientific.net/AMR.631-632.227) / Adv. Mater. Res. by L-S Zhang (2013)
  10. Murty, B. S., Yeh, J.-W. & Ranganathan, S. High Entropy Alloys Butterworth-Heinemann (2014) . (10.1016/B978-0-12-800251-3.00002-X)
  11. Otto, F., Yang, Y., Bei, H. & George, E. P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013) . (10.1016/j.actamat.2013.01.042) / Acta Mater. by F Otto (2013)
  12. Ren, M.-X., Li, B.-S. & Fu, H.-Z. Formation condition of solid solution type high-entropy alloy. Trans. Nonferrous Met. Soc. China 23, 991–995 (2013) . (10.1016/S1003-6326(13)62557-1) / Trans. Nonferrous Met. Soc. China by M-X Ren (2013)
  13. Gao, M. C. & Alman, D. E. Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504–4519 (2013) . (10.3390/e15104504) / Entropy by MC Gao (2013)
  14. Zhang, F. et al. An understanding of high entropy alloys from phase diagram calculations. Calphad 45, 1–10 (2014) . (10.1016/j.calphad.2013.10.006) / Calphad by F Zhang (2014)
  15. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L. & Liaw, P. K. Solid-solution phase formation rules formulti-component alloys. Adv. Eng. Mater. 10, 534–538 (2008) . (10.1002/adem.200700240) / Adv. Eng. Mater. by Y Zhang (2008)
  16. Guo, S. & Liu, C. T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. 21, 433–446 (2011) . (10.1016/S1002-0071(12)60080-X) / Prog. Nat. Sci. by S Guo (2011)
  17. Guo, S. & Liu, C. T. Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions. Chin. J. Nat. 35, 85–96 (2013) . / Chin. J. Nat. by S Guo (2013)
  18. Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014) . (10.1016/j.pmatsci.2013.10.001) / Prog. Mater. Sci. by Y Zhang (2014)
  19. Gaskell, D. R. Introduction to the Thermodynamics of Materials 3rd edn 134–135Taylor & Francis (1995) .
  20. Takeuchi, A. & Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing nad period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005) . (10.2320/matertrans.46.2817) / Mater. Trans. by A Takeuchi (2005)
  21. Franke, P. & Neuschutz, D. in Thermodynamic Properties of Inorganic Materials Compiled by SGTE ed. Martienssen W. Springer-Verlag: Berlin, Germany, (2002) .
  22. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013) . (10.1038/nmat3568) / Nat. Mater. by S Curtarolo (2013)
  23. Zhang, C., Zhang, F., Chen, S. & Cao, W. Computational thermodynamics aided high-entropy alloy design. JOM 64, 839–845 (2012) . (10.1007/s11837-012-0365-6) / JOM by C Zhang (2012)
  24. Senkov, O. N., Senkova, S. V., Woodward, C. & Miracle, D. B. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545–1557 (2013) . (10.1016/j.actamat.2012.11.032) / Acta Mater. by ON Senkov (2013)
  25. Senkov, O. N., Senkova, S. V. & Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high entropy alloys. Acta Mater. 68, 214–228 (2014) . (10.1016/j.actamat.2014.01.029) / Acta Mater. by ON Senkov (2014)
  26. Senkov, O. N., Zhang, F. & Miller, J. D. Phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy: comparison of experimental and simulated data. Entropy 15, 3796–3809 (2013) . (10.3390/e15093796) / Entropy by ON Senkov (2013)
  27. Chang, Y. A. et al. Phase diagram calculation: past, present and future. Prog. Mater. Sci. 49, 313–345 (2004) . (10.1016/S0079-6425(03)00025-2) / Prog. Mater. Sci. by YA Chang (2004)
  28. Kattner, U. R. Thermodynamic modeling of multicomponent phase equilibria. JOM 49, 14–19 (1997) . (10.1007/s11837-997-0024-5) / JOM by UR Kattner (1997)
  29. Chou, K. C. & Chang, Y. A. A study of ternary geometrical models. Ber. Bunsenges. Phys. Chem. 93, 735–741 (1989) . (10.1002/bbpc.19890930615) / Ber. Bunsenges. Phys. Chem. by KC Chou (1989)
  30. Tsai, M.-H. & Yeh, J.-W. High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107–123 (2014) . (10.1080/21663831.2014.912690) / Mater. Res. Lett. by M-H Tsai (2014)
Dates
Type When
Created 10 years, 5 months ago (March 5, 2015, 7:04 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:59 a.m.)
Indexed 48 minutes ago (Aug. 23, 2025, 1:11 a.m.)
Issued 10 years, 5 months ago (March 5, 2015)
Published 10 years, 5 months ago (March 5, 2015)
Published Online 10 years, 5 months ago (March 5, 2015)
Funders 0

None

@article{Senkov_2015, title={Accelerated exploration of multi-principal element alloys with solid solution phases}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms7529}, DOI={10.1038/ncomms7529}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Senkov, O.N. and Miller, J.D. and Miracle, D.B. and Woodward, C.}, year={2015}, month=mar }