Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractRedox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

Bibliography

Li, B., Nie, Z., Vijayakumar, M., Li, G., Liu, J., Sprenkle, V., & Wang, W. (2015). Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Communications, 6(1).

Authors 7
  1. Bin Li (first)
  2. Zimin Nie (additional)
  3. M. Vijayakumar (additional)
  4. Guosheng Li (additional)
  5. Jun Liu (additional)
  6. Vincent Sprenkle (additional)
  7. Wei Wang (additional)
References 29 Referenced 475
  1. Yang, Z. et al. Electrochemical Energy Storage for Green Grid. Chem. Rev. 111, 3577–3613 (2011). (10.1021/cr100290v) / Chem. Rev. by Z Yang (2011)
  2. Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). (10.1126/science.1212741) / Science by B Dunn (2011)
  3. Wang, W. et al. Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970–986 (2013). (10.1002/adfm.201200694) / Adv. Funct. Mater. by W Wang (2013)
  4. Huskinson, B. et al. A metal-free organic-inorganic aqueous flow battery. Nature 505, 195–198 (2014). (10.1038/nature12909) / Nature by B Huskinson (2014)
  5. Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012). (10.1109/JPROC.2012.2190170) / Proc. IEEE by MS Whittingham (2012)
  6. Leung, P. et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2, 10125–10156 (2012). (10.1039/c2ra21342g) / RSC Adv. by P Leung (2012)
  7. Weber, A. et al. Redox flow batteries: a review. J. App. Electrochem. 41, 1137–1164 (2011). (10.1007/s10800-011-0348-2) / J. App. Electrochem. by A Weber (2011)
  8. Skyllas-Kazacos, M., Chakrabarti, M. H., Hajimolana, S. A., Mjalli, F. S. & Saleem, M. Progress in flow battery research and development. J. Electrochem. Soc. 158, R55–R79 (2011). (10.1149/1.3599565) / J. Electrochem. Soc. by M Skyllas-Kazacos (2011)
  9. Brushett, F. R., Vaughey, J. T. & Jansen, A. N. An all-organic non-aqueous lithium-ion redox flow battery. Adv. Energy Mater. 2, 1390–1396 (2012). (10.1002/aenm.201200322) / Adv. Energy Mater. by FR Brushett (2012)
  10. Cappillino, P. J. et al. Application of redox non-innocent ligands to non-aqueous flow battery electrolytes. Adv. Energy Mater. 4, 1300566 (2014). (10.1002/aenm.201300566) / Adv. Energy Mater. by PJ Cappillino (2014)
  11. Zhao, Y. & Byon, H. R. High-performance lithium-iodine flow battery. Adv. Energy Mater. 3, 1630–1635 (2013). (10.1002/aenm.201300627) / Adv. Energy Mater. by Y Zhao (2013)
  12. Yang, Y., Zheng, G. & Cui, Y. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ. Sci. 6, 1552–1558 (2013). (10.1039/c3ee00072a) / Energy Environ. Sci. by Y Yang (2013)
  13. Xiao, J. et al. Energy storage systems having an electrode comprising LixSy, US patent WO2013147930 A1 (2013).
  14. Lim, H. S., Lackner, A. M. & Knechtli, R. C. Zinc‐bromine secondary battery. J. Electrochem. Soc. 124, 1154–1157 (1977). (10.1149/1.2133517) / J. Electrochem. Soc. by HS Lim (1977)
  15. Linden, D. & Reddy, T. B. (eds). inHandbook of Batteries Vol. 391–20McGraw-Hill (2002).
  16. Linden, D. & Reddy, T. B. (eds). inHandbook of Batteries Vol. 3533–34McGraw-Hill (2002).
  17. Martin, D. R. Lecture demonstrations of electrochemical reactions. J. Chem. Educ. 25, 495 (1948). (10.1021/ed025p495) / J. Chem. Educ. by DR Martin (1948)
  18. Svensson, P. H. & Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide−iodine systems. Chem. Rev. 103, 1649–1684 (2003). (10.1021/cr0204101) / Chem. Rev. by PH Svensson (2003)
  19. Zhao, Y. et al. A 3.5V lithium–iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 14, 1085–1092 (2014). (10.1021/nl404784d) / Nano Lett. by Y Zhao (2014)
  20. Boschloo, G. & Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819–1826 (2009). (10.1021/ar900138m) / Acc. Chem. Res. by G Boschloo (2009)
  21. Anderson, A. & Sun, T. S. Raman spectra of molecular crystals I. Chlorine, bromine, and iodine. Chem. Phys. Lett. 6, 611–616 (1970). (10.1016/0009-2614(70)85239-3) / Chem. Phys. Lett. by A Anderson (1970)
  22. Wakita, H., Johansson, G., Sandström, M., Goggin, P. & Ohtaki, H. Structure determination of zinc iodide complexes formed in aqueous solution. J. Solution Chem. 20, 643–668 (1991). (10.1007/BF00650714) / J. Solution Chem. by H Wakita (1991)
  23. Deplano, P., Ferraro, J. R., Mercuri, M. L. & Trogu, E. F. Structural and Raman spectroscopic studies as complementary tools in elucidating the nature of the bonding in polyiodides and in donor-I2 adducts. Coord. Chem. Rev. 188, 71–95 (1999). (10.1016/S0010-8545(98)00238-0) / Coord. Chem. Rev. by P Deplano (1999)
  24. Tam, H. H., Asthagiri, D. & Paulaitis, M. E. Coordination state probabilities and the solvation free energy of Zn2+ in aqueous methanol solutions. J. Chem. Phys. 137, 164504 (2012). (10.1063/1.4759452) / J. Chem. Phys. by HH Tam (2012)
  25. Banik, S. J. & Akolkar, R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive. J. Electrochem. Soc. 160, D519–D523 (2013). (10.1149/2.040311jes) / J. Electrochem. Soc. by SJ Banik (2013)
  26. Farkas, L., Perlmutter, B. & Schachter, O. The reaction between ethyl alcohol and bromine. J. Am. Chem. Soc. 71, 2829–2833 (1949). (10.1021/ja01176a069) / J. Am. Chem. Soc. by L Farkas (1949)
  27. Wang, W. et al. A new Fe/V redox flow battery using a sulfuric/chloric mixed-acid supporting electrolyte. Adv. Energy Mater. 2, 487–493 (2012). (10.1002/aenm.201100527) / Adv. Energy Mater. by W Wang (2012)
  28. Li, B. et al. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett. 13, 1330–1335 (2013). (10.1021/nl400223v) / Nano Lett. by B Li (2013)
  29. te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001). (10.1002/jcc.1056) / J. Comput. Chem. by G te Velde (2001)
Dates
Type When
Created 10 years, 6 months ago (Feb. 24, 2015, 5:15 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:07 a.m.)
Indexed 1 minute ago (Aug. 27, 2025, 10:25 p.m.)
Issued 10 years, 6 months ago (Feb. 24, 2015)
Published 10 years, 6 months ago (Feb. 24, 2015)
Published Online 10 years, 6 months ago (Feb. 24, 2015)
Funders 0

None

@article{Li_2015, title={Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms7303}, DOI={10.1038/ncomms7303}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Li, Bin and Nie, Zimin and Vijayakumar, M. and Li, Guosheng and Liu, Jun and Sprenkle, Vincent and Wang, Wei}, year={2015}, month=feb }