Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Lee, S., Broido, D., Esfarjani, K., & Chen, G. (2015). Hydrodynamic phonon transport in suspended graphene. Nature Communications, 6(1).

Authors 4
  1. Sangyeop Lee (first)
  2. David Broido (additional)
  3. Keivan Esfarjani (additional)
  4. Gang Chen (additional)
References 63 Referenced 300
  1. Casimir, H. B. G. Note on the conduction of heat in crystals. Physica 5, 495–500 (1938). (10.1016/S0031-8914(38)80162-2) / Physica by HBG Casimir (1938)
  2. Ward, J. C. & Wilks, J. III. Second sound and the thermo-mechanical effect at very low temperatures. Philos. Mag. 43, 48–50 (1952). (10.1080/14786440108520965) / Philos. Mag. by JC Ward (1952)
  3. De Haas, W. J. & Biermasz, T. The thermal conductivity of KBr, KCl and SiO2 at low temperatures. Physica 4, 752–756 (1937). (10.1016/S0031-8914(37)80176-7) / Physica by WJ De Haas (1937)
  4. Ackerman, C. C., Bertman, B., Fairbank, H. A. & Guyer, R. A. Second sound in solid helium. Phys. Rev. Lett. 16, 789–791 (1966). (10.1103/PhysRevLett.16.789) / Phys. Rev. Lett. by CC Ackerman (1966)
  5. Mezhov-Deglin, L. Measurement of the thermal conductivity of crystalline He4. J. Exp. Theor. Phys. 49, 66–79 (1965). / J. Exp. Theor. Phys. by L Mezhov-Deglin (1965)
  6. Dresselhaus, M. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007). (10.1002/adma.200600527) / Adv. Mater. by M Dresselhaus (2007)
  7. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003). (10.1063/1.1524305) / J. Appl. Phys. by DG Cahill (2003)
  8. Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014). (10.1063/1.4832615) / Appl. Phys. Rev. by DG Cahill (2014)
  9. Jackson, H. E., Walker, C. T. & McNelly, T. F. Second sound in NaF. Phys. Rev. Lett. 25, 26–28 (1970). (10.1103/PhysRevLett.25.26) / Phys. Rev. Lett. by HE Jackson (1970)
  10. Vincenti, W. G. & Kruger, C. H. Introduction to Physical Gas Dynamics Wiley (1965).
  11. Klemens, P. Thermal conductivity of solids at low temperatures. Handbuch der Physik 14, 198–281 (1956). / Handbuch der Physik by P Klemens (1956)
  12. Sussmann, J. A. & Thellung, A. Thermal conductivity of perfect dielectric crystals in the absence of Umklapp processes. Proc. Phys. Soc. 81, 1122 (1963). (10.1088/0370-1328/81/6/318) / Proc. Phys. Soc. by JA Sussmann (1963)
  13. Guyer, R. A. & Krumhansl, J. A. Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966). (10.1103/PhysRev.148.766) / Phys. Rev. by RA Guyer (1966)
  14. Deinzer, G., Birner, G. & Strauch, D. Ab initio calculation of the linewidth of various phonon modes in germanium and silicon. Phys. Rev. B 67, 144304 (2003). (10.1103/PhysRevB.67.144304) / Phys. Rev. B by G Deinzer (2003)
  15. Broido, D. A., Malorny, M., Birner, G., Mingo, N. & Stewart, D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007). (10.1063/1.2822891) / Appl. Phys. Lett. by DA Broido (2007)
  16. Omini, M. & Sparavigna, A. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B 53, 9064–9073 (1996). (10.1103/PhysRevB.53.9064) / Phys. Rev. B by M Omini (1996)
  17. Fugallo, G., Lazzeri, M., Paulatto, L. & Mauri, F. Ab initio variational approach for evaluating lattice thermal conductivity. Phys. Rev. B 88, 045430 (2013). (10.1103/PhysRevB.88.045430) / Phys. Rev. B by G Fugallo (2013)
  18. Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011). (10.1103/PhysRevB.84.085204) / Phys. Rev. B by K Esfarjani (2011)
  19. Bonini, N., Garg, J. & Marzari, N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012). (10.1021/nl202694m) / Nano Lett. by N Bonini (2012)
  20. Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013). (10.1103/PhysRevLett.111.025901) / Phys. Rev. Lett. by L Lindsay (2013)
  21. Lee, S., Esfarjani, K., Mendoza, J., Dresselhaus, M. S. & Chen, G. Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles. Phys. Rev. B 89, 085206 (2014). (10.1103/PhysRevB.89.085206) / Phys. Rev. B by S Lee (2014)
  22. Lee, S., Esfarjani, K., Luo, T., Zhou, J., Tian, Z. & Chen, G. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014). (10.1038/ncomms4525) / Nat. Commun. by S Lee (2014)
  23. Lindsay, L., Li, W., Carrete, J., Mingo, N., Broido, D. A. & Reinecke, T. L. Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 89, 155426 (2014). (10.1103/PhysRevB.89.155426) / Phys. Rev. B by L Lindsay (2014)
  24. Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959). (10.1103/PhysRev.113.1046) / Phys. Rev. by J Callaway (1959)
  25. Krumhansl, J. A. Thermal conductivity of insulating crystals in the presence of normal processes. Proc. Phys. Soc. 85, 921 (1965). (10.1088/0370-1328/85/5/310) / Proc. Phys. Soc. by JA Krumhansl (1965)
  26. Guyer, R. A. & Krumhansl, J. A. Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966). (10.1103/PhysRev.148.778) / Phys. Rev. by RA Guyer (1966)
  27. Wei, L., Kuo, P. K., Thomas, R. L., Anthony, T. R. & Banholzer, W. F. Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 70, 3764–3767 (1993). (10.1103/PhysRevLett.70.3764) / Phys. Rev. Lett. by L Wei (1993)
  28. Ward, A., Broido, D. A., Stewart, D. A. & Deinzer, G. Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009). (10.1103/PhysRevB.80.125203) / Phys. Rev. B by A Ward (2009)
  29. Chen, G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Oxford Univ. Press (2005).
  30. Greywall, D. S. Thermal-conductivity measurements in liquid 4He below 0.7 K. Phys. Rev. B 23, 2152–2168 (1981). (10.1103/PhysRevB.23.2152) / Phys. Rev. B by DS Greywall (1981)
  31. Whitworth, R. W. Experiments on the flow of heat in liquid helium below 0.7 K. Proc. R. Soc. Lond. A 246, 390–405 (1958). (10.1098/rspa.1958.0146) / Proc. R. Soc. Lond. A by RW Whitworth (1958)
  32. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008). (10.1038/nature06381) / Nature by AI Hochbaum (2008)
  33. Thomlinson, W. C. Evidence for anomalous phonon excitations in solid He3. Phys. Rev. Lett. 23, 1330–1332 (1969). (10.1103/PhysRevLett.23.1330) / Phys. Rev. Lett. by WC Thomlinson (1969)
  34. Hogan, E. M., Guyer, R. A. & Fairbank, H. A. Thermal conductivity of oriented single crystals of hexagonal close-packed helium 4. Phys. Rev. 185, 356–373 (1969). (10.1103/PhysRev.185.356) / Phys. Rev. by EM Hogan (1969)
  35. Gurzhi, R. Thermal conductivity of dielectrics and ferrodielectrics at low temperatures. J. Exp. Theor. Phys. 46, 719–724 (1964). / J. Exp. Theor. Phys. by R Gurzhi (1964)
  36. Bae, M.-H. et al. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4, 1734 (2013). (10.1038/ncomms2755) / Nat. Commun. by M-H Bae (2013)
  37. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). (10.1021/nl0731872) / Nano Lett. by AA Balandin (2008)
  38. Ghosh, S. et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008). (10.1063/1.2907977) / Appl. Phys. Lett. by S Ghosh (2008)
  39. Chen, S. et al. Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203–207 (2012). (10.1038/nmat3207) / Nat. Mater. by S Chen (2012)
  40. Cai, W. et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645–1651 (2010). (10.1021/nl9041966) / Nano Lett. by W Cai (2010)
  41. Pettes, M. T., Jo, I., Yao, Z. & Shi, L. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 11, 1195–1200 (2011). (10.1021/nl104156y) / Nano Lett. by MT Pettes (2011)
  42. Wang, Z. et al. Thermal transport in suspended and supported few-layer graphene. Nano Lett. 11, 113–118 (2010). (10.1021/nl102923q) / Nano Lett. by Z Wang (2010)
  43. Xu, X. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014). (10.1038/ncomms4689) / Nat. Commun. by X Xu (2014)
  44. Ackerman, C. C. & Overton, W. C. Second sound in solid helium-3. Phys. Rev. Lett. 22, 764–766 (1969). (10.1103/PhysRevLett.22.764) / Phys. Rev. Lett. by CC Ackerman (1969)
  45. McNelly, T. F. et al. Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24, 100–102 (1970). (10.1103/PhysRevLett.24.100) / Phys. Rev. Lett. by TF McNelly (1970)
  46. Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V. Fundamentals of Acoustics 4th edn Wiley-VCH (1999).
  47. Narayanamurti, V. & Dynes, R. C. Observation of second sound in bismuth. Phys. Rev. Lett. 28, 1461–1465 (1972). (10.1103/PhysRevLett.28.1461) / Phys. Rev. Lett. by V Narayanamurti (1972)
  48. Landau, L. The theory of superfluidity of helium II. J. Phys. USSR 5, 71–90 (1941). / J. Phys. USSR by L Landau (1941)
  49. Ward, J. & Wilks, J. The velocity of second sound in liquid helium near the absolute zero. Philos. Mag. 42, 314–316 (1951). (10.1080/14786445108561271) / Philos. Mag. by J Ward (1951)
  50. Imry, Y. & Landauer, R. Conductance viewed as transmission. Rev. Mod. Phys. 71, S306–S312 (1999). (10.1103/RevModPhys.71.S306) / Rev. Mod. Phys. by Y Imry (1999)
  51. Leibfried, G. & Schlömann, G. Heat conduction in electrically insulating crystals. Nachr. Ges. Wiss. Goett. Math.-Phys. K1. 2, 71 (1954). / Nachr. Ges. Wiss. Goett. Math.-Phys. K1. by G Leibfried (1954)
  52. Roldán, R., Fasolino, A., Zakharchenko, K. V. & Katsnelson, M. I. Suppression of anharmonicities in crystalline membranes by external strain. Phys. Rev. B 83, 174104 (2011). (10.1103/PhysRevB.83.174104) / Phys. Rev. B by R Roldán (2011)
  53. de Andres, P. L., Guinea, F. & Katsnelson, M. I. Bending modes, anharmonic effects, and thermal expansion coefficient in single-layer and multilayer graphene. Phys. Rev. B 86, 144103 (2012). (10.1103/PhysRevB.86.144103) / Phys. Rev. B by PL de Andres (2012)
  54. Mariani, E. & von Oppen, F. Flexural phonons in free-standing graphene. Phys. Rev. Lett. 100, 076801 (2008). (10.1103/PhysRevLett.100.076801) / Phys. Rev. Lett. by E Mariani (2008)
  55. Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010). (10.1103/PhysRevB.82.115427) / Phys. Rev. B by L Lindsay (2010)
  56. Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997). (10.1103/PhysRevB.55.10337) / Phys. Rev. B by X Gonze (1997)
  57. Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997). (10.1103/PhysRevB.55.10355) / Phys. Rev. B by X Gonze (1997)
  58. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009). / J. Phys.: Condens. Matter by P Giannozzi (2009)
  59. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981). (10.1103/PhysRevB.23.5048) / Phys. Rev. B by JP Perdew (1981)
  60. Broido, D. A., Lindsay, L. & Ward, A. Thermal conductivity of diamond under extreme pressure: a first-principles study. Phys. Rev. B 86, 115203 (2012). (10.1103/PhysRevB.86.115203) / Phys. Rev. B by DA Broido (2012)
  61. Tamura, S.-i. Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858–866 (1983). (10.1103/PhysRevB.27.858) / Phys. Rev. B by S-i Tamura (1983)
  62. Gurevich, V. L. v. Transport in Phonon Systems Elsevier Science Publishers (1986).
  63. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010). (10.1126/science.1184014) / Science by JH Seol (2010)
Dates
Type When
Created 10 years, 6 months ago (Feb. 18, 2015, 9 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:08 a.m.)
Indexed 1 day, 12 hours ago (Aug. 23, 2025, 9:44 p.m.)
Issued 10 years, 6 months ago (Feb. 18, 2015)
Published 10 years, 6 months ago (Feb. 18, 2015)
Published Online 10 years, 6 months ago (Feb. 18, 2015)
Funders 0

None

@article{Lee_2015, title={Hydrodynamic phonon transport in suspended graphene}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms7290}, DOI={10.1038/ncomms7290}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Lee, Sangyeop and Broido, David and Esfarjani, Keivan and Chen, Gang}, year={2015}, month=feb }