Abstract
AbstractThe electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of −11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites.
References
36
Referenced
953
-
Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).
(
10.1021/cr1002326
) / Chem. Rev. by MG Walter (2010) -
Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).
(
10.1021/cr100246c
) / Chem. Rev. by TR Cook (2010) -
Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).
(
10.1038/nmat1752
) / Nat. Mater. by J Greeley (2006) -
Prins, R., Debeer, V. H. J. & Somorjai, G. A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts. Catal. Rev. Sci. Eng. 31, 1–41 (1989).
(
10.1080/01614948909351347
) / Catal. Rev. Sci. Eng. by R Prins (1989) -
Hinnemann, B. et al. Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).
(
10.1021/ja0504690
) / J. Am. Chem. Soc. by B Hinnemann (2005) -
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).
(
10.1126/science.1141483
) / Science by TF Jaramillo (2007) -
Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).
(
10.1126/science.1215868
) / Science by HI Karunadasa (2012) -
Bonde, J., Moses, P. G., Jaramillo, T. F., Norskov, J. K. & Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2008).
(
10.1039/B803857K
) / Faraday Discuss. by J Bonde (2008) -
Kibsgaard, J., Chen, Z. B., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).
(
10.1038/nmat3439
) / Nat. Mater. by J Kibsgaard (2012) -
Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).
(
10.1021/ja404523s
) / J. Am. Chem. Soc. by MA Lukowski (2013) -
Kong, D. S. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).
(
10.1021/nl400258t
) / Nano Lett. by DS Kong (2013) -
Xie, J. F. et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807–5813 (2013).
(
10.1002/adma.201302685
) / Adv. Mater. by JF Xie (2013) -
Merki, D., Fierro, S., Vrubel, H. & Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).
(
10.1039/C1SC00117E
) / Chem. Sci. by D Merki (2011) -
Vrubel, H., Merki, D. & Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 5, 6136–6144 (2012).
(
10.1039/c2ee02835b
) / Energy Environ. Sci. by H Vrubel (2012) -
Benck, J. D., Chen, Z. B., Kuritzky, L. Y., Forman, A. J. & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012).
(
10.1021/cs300451q
) / ACS Catal. by JD Benck (2012) -
Liao, L. et al. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 23, 5326–5333 (2013).
(
10.1002/adfm.201300318
) / Adv. Funct. Mater. by L Liao (2013) -
Li, Y. G. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).
(
10.1021/ja201269b
) / J. Am. Chem. Soc. by YG Li (2011) -
Chen, Z. B. et al. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011).
(
10.1021/nl2020476
) / Nano Lett. by ZB Chen (2011) -
Wang, T. Y. et al. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 6, 625–633 (2013).
(
10.1039/C2EE23513G
) / Energy Environ. Sci. by TY Wang (2013) -
Gao, M. R., Yao, W. T., Yao, H. B. & Yu, S. H. Synthesis of unique ultrathin lamellar mesostructured CoSe2-amine (protonated) nanobelts in a binary solution. J. Am. Chem. Soc. 131, 7486–7487 (2009).
(
10.1021/ja900506x
) / J. Am. Chem. Soc. by MR Gao (2009) -
Gao, M. R., Xu, Y. F., Jiang, J., Zheng, Y. R. & Yu, S. H. Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J. Am. Chem. Soc. 134, 2930–2933 (2012).
(
10.1021/ja211526y
) / J. Am. Chem. Soc. by MR Gao (2012) -
Gao, M. R. et al. A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. Angew. Chem. Int. Ed. 50, 4905–4908 (2011).
(
10.1002/anie.201007036
) / Angew. Chem. Int. Ed. by MR Gao (2011) -
Gao, M. R. et al. In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance. J. Mater. Chem. 20, 9355–9361 (2010).
(
10.1039/c0jm01547d
) / J. Mater. Chem. by MR Gao (2010) -
Gao, M. R. et al. Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H2 production. J. Mater. Chem. 22, 13662–13668 (2012).
(
10.1039/c2jm31916k
) / J. Mater. Chem. by MR Gao (2012) -
Xu, Y. F., Gao, M. R., Zheng, Y. R., Jiang, J. & Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem. Int. Ed. 52, 8546–8550 (2013).
(
10.1002/anie.201303495
) / Angew. Chem. Int. Ed. by YF Xu (2013) -
Gao, M. R., Jiang, J. & Yu, S. H. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8, 13–27 (2012).
(
10.1002/smll.201101573
) / Small by MR Gao (2012) -
Gao, M. R., Xu, Y. F., Jiang, J. & Yu, S. H. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42, 2986–3017 (2013).
(
10.1039/c2cs35310e
) / Chem. Soc. Rev. by MR Gao (2013) -
Kong, D. S., Cha, J. J., Wang, H. T., Lee, H. R. & Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6, 3553–3558 (2013).
(
10.1039/c3ee42413h
) / Energy Environ. Sci. by DS Kong (2013) -
Merki, D. & Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011).
(
10.1039/c1ee01970h
) / Energy Environ. Sci. by D Merki (2011) -
Parasons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).
(
10.1039/tf9585401053
) / Trans. Faraday Soc. by R Parasons (1958) -
Norskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).
(
10.1149/1.1856988
) / J. Electrochem. Soc. by JK Norskov (2005) -
Merki, D., Vrubel, H., Rovelli, L., Fierro, S. & Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012).
(
10.1039/c2sc20539d
) / Chem. Sci. by D Merki (2012) -
Chen, W. F. et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).
(
10.1002/anie.201200699
) / Angew. Chem. Int. Ed. by WF Chen (2012) -
Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).
(
10.1016/S0013-4686(02)00329-8
) / Electrochim. Acta by BE Conway (2002) -
Skulason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).
(
10.1021/jp1048887
) / J. Phys. Chem. C by E Skulason (2010) -
DuBois, M. R. & DuBois, D. L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 38, 62–72 (2009).
(
10.1039/B801197B
) / Chem. Soc. Rev. by MR DuBois (2009)
Dates
Type | When |
---|---|
Created | 10 years, 7 months ago (Jan. 14, 2015, 6:53 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 7:26 a.m.) |
Indexed | 2 hours, 22 minutes ago (Aug. 29, 2025, 6:45 a.m.) |
Issued | 10 years, 7 months ago (Jan. 14, 2015) |
Published | 10 years, 7 months ago (Jan. 14, 2015) |
Published Online | 10 years, 7 months ago (Jan. 14, 2015) |
@article{Gao_2015, title={An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6982}, DOI={10.1038/ncomms6982}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Gao, Min-Rui and Liang, Jin-Xia and Zheng, Ya-Rong and Xu, Yun-Fei and Jiang, Jun and Gao, Qiang and Li, Jun and Yu, Shu-Hong}, year={2015}, month=jan }