Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Santodonato, L. J., Zhang, Y., Feygenson, M., Parish, C. M., Gao, M. C., Weber, R. J. K., Neuefeind, J. C., Tang, Z., & Liaw, P. K. (2015). Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nature Communications, 6(1).

Authors 9
  1. Louis J. Santodonato (first)
  2. Yang Zhang (additional)
  3. Mikhail Feygenson (additional)
  4. Chad M. Parish (additional)
  5. Michael C. Gao (additional)
  6. Richard J.K. Weber (additional)
  7. Joerg C Neuefeind (additional)
  8. Zhi Tang (additional)
  9. Peter K Liaw (additional)
References 68 Referenced 625
  1. Bragg, W. L. & Williams, E. J. The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. A 145, 699–730 (1934). (10.1098/rspa.1934.0132) / Proc. R. Soc. Lond. A by WL Bragg (1934)
  2. Liu, C. T. & Stiegler, J. O. Ductile ordered intermetallic alloys. Science 226, 636–642 (1984). (10.1126/science.226.4675.636) / Science by CT Liu (1984)
  3. Fleischer, R. L., Dimiduk, D. M. & Lipsitt, H. A. Intermetallic compounds for strong high-temperature materials: status and potential. Annu. Rev. Mater. Sci. 19, 231–263 (1989). (10.1146/annurev.ms.19.080189.001311) / Annu. Rev. Mater. Sci. by RL Fleischer (1989)
  4. Morris, D. G., Muñoz-Morris, M. A. & Chao, J. Development of high strength, high ductility and high creep resistant iron aluminide. Intermetallics 12, 821–826 (2004). (10.1016/j.intermet.2004.02.032) / Intermetallics by DG Morris (2004)
  5. Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31, 633–648 (2006). (10.3166/acsm.31.633-648) / Ann. Chim. Sci. Mat. by JW Yeh (2006)
  6. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). (10.1002/adem.200300567) / Adv. Eng. Mater. by JW Yeh (2004)
  7. Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2013). (10.1016/j.pmatsci.2013.10.001) / Prog. Mater. Sci. by Y Zhang (2013)
  8. Zhang, Y., Yang, X. & Liaw, P. K. Alloy design and properties optimization of high-entropy alloys. JOM 64, 830–838 (2012). (10.1007/s11837-012-0366-5) / JOM by Y Zhang (2012)
  9. Pike, L. M., Anderson, I. M., Liu, C. T. & Chang, Y. A. Site occupancies, point defect concentrations, and solid solution hardening in B2 (Ni,Fe)Al. Acta Mater. 50, 3859–3879 (2002). (10.1016/S1359-6454(02)00192-1) / Acta Mater. by LM Pike (2002)
  10. Senkov, O. N., Scott, J. M., Senkova, S. V., Miracle, D. B. & Woodward, C. F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloy. Compd. 509, 6043–6048 (2011). (10.1016/j.jallcom.2011.02.171) / J. Alloy. Compd. by ON Senkov (2011)
  11. Tang, Z. et al. Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloy systems. JOM 65, 1848–1858 (2013). (10.1007/s11837-013-0776-z) / JOM by Z Tang (2013)
  12. Zuo, T. T., Ren, S. B., Liaw, P. K. & Zhang, Y. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int. J. Miner. Metall. Mater. 20, 549–555 (2013). (10.1007/s12613-013-0764-x) / Int. J. Miner. Metall. Mater. by TT Zuo (2013)
  13. Yang, X., Zhang, Y. & Liaw, P. K. inIUMRS International Conference in Asia 2011, Procedia Engineering Vol. 36 (eds Wang C. M., Peng C. J. 292–298Elsevier Science BV (2012). (10.1016/j.proeng.2012.03.043)
  14. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P. K. Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010). (10.1016/j.intermet.2010.05.014) / Intermetallics by ON Senkov (2010)
  15. Antonaglia, J. et al. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM 66, 2002–2008 (2014). (10.1007/s11837-014-1130-9) / JOM by J Antonaglia (2014)
  16. Zhang, Y., Zuo, T., Cheng, Y. & Liaw, P. K. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013). (10.1038/srep01455) / Sci. Rep. by Y Zhang (2013)
  17. Laktionova, M. A., Tabchnikova, E. D., Tang, Z. & Liaw, P. K. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2-300K. Low Temp. Phys. 39, 630–632 (2013). (10.1063/1.4813688) / Low Temp. Phys. by MA Laktionova (2013)
  18. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014). (10.1126/science.1254581) / Science by B Gludovatz (2014)
  19. Tang, Z., Huang, L., He, W. & Liaw, P. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16, 895–911 (2014). (10.3390/e16020895) / Entropy by Z Tang (2014)
  20. Lee, C. P., Chen, Y. Y., Hsu, C. Y., Yeh, J. W. & Shih, H. C. Enhancing pitting corrosion resistance of Al(x)CrFe(1.5)MnNi(0.5) high-entropy alloys by anodic treatment in sulfuric acid. Thin Solid Films 517, 1301–1305 (2008). (10.1016/j.tsf.2008.06.014) / Thin Solid Films by CP Lee (2008)
  21. Chuang, M. H., Tsai, M. H., Wang, W. R., Lin, S. J. & Yeh, J. W. Microstructure and wear behavior of Al(x)Co(1.5)CrFeNi(1.5)Ti(y) high-entropy alloys. Acta Mater. 59, 6308–6317 (2011). (10.1016/j.actamat.2011.06.041) / Acta Mater. by MH Chuang (2011)
  22. Hemphill, M. A. et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723–5734 (2012). (10.1016/j.actamat.2012.06.046) / Acta Mater. by MA Hemphill (2012)
  23. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L. & Liaw, P. K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008). (10.1002/adem.200700240) / Adv. Eng. Mater. by Y Zhang (2008)
  24. Guo, W. et al. Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study. Metall. Mater. Trans. A 44, 1994–1997 (2013). (10.1007/s11661-012-1474-0) / Metall. Mater. Trans. A by W Guo (2013)
  25. Porter, D., Easterling, K. & Sherif, M. Phase Transformations in Metals and Alloys 3rd edn 13, 34, 302–309, 358CRC Press (2009).
  26. Guo, S. & Liu, C. T. Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions. Chin. J. Nat. 35, 85–96 (2013). / Chin. J. Nat. by S Guo (2013)
  27. Otto, F., Yang, Y., Bei, H. & George, E. P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013). (10.1016/j.actamat.2013.01.042) / Acta Mater. by F Otto (2013)
  28. Fultz, B. Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247–352 (2010). (10.1016/j.pmatsci.2009.05.002) / Prog. Mater. Sci. by B Fultz (2010)
  29. Ikeda, T., Numakura, H. & Koiwa, M. A Bragg–Williams model for the thermodynamic activity and the thermodynamic factor in diffusion for ordered alloys with substitutional defects. Acta Mater. 46, 6605–6613 (1998). (10.1016/S1359-6454(98)00287-0) / Acta Mater. by T Ikeda (1998)
  30. Assadi, H. & Greer, A. L. Site-ordering effects on element partitioning during rapid solidification of alloys. Nature 383, 150–152 (1996). (10.1038/383150a0) / Nature by H Assadi (1996)
  31. Tong, C. J. et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881–893 (2005). (10.1007/s11661-005-0283-0) / Metall. Mater. Trans. A by CJ Tong (2005)
  32. Miracle, D. B. The physical and mechanical properties of NiAl. Acta Metall. Mater. 41, 649–684 (1993). (10.1016/0956-7151(93)90001-9) / Acta Metall. Mater. by DB Miracle (1993)
  33. Singh, S., Wanderka, N., Murty, B. S., Glatzel, U. & Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59, 182–190 (2011). (10.1016/j.actamat.2010.09.023) / Acta Mater. by S Singh (2011)
  34. Straumanis, M. E. & Yu, L. S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In α phase. Acta Crystallogr. A25, 676–682 (1969). (10.1107/S0567739469001549) / Acta Crystallogr. by ME Straumanis (1969)
  35. Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). (10.1107/S0021889869006558) / J. Appl. Crystallogr. by H Rietveld (1969)
  36. Hanna, J. A., Baker, I., Wittman, M. W. & Munroe, P. R. A new high-strength spinodal alloy. J. Mater. Res. 20, 791–795 (2005). (10.1557/JMR.2005.0136) / J. Mater. Res. by JA Hanna (2005)
  37. Hillert, M., Cohen, M. & Averbach, B. L. Formation of modulated structures in copper-nickel-iron alloys. Acta Metall. 9, 536–546 (1961). (10.1016/0001-6160(61)90156-0) / Acta Metall. by M Hillert (1961)
  38. Weber, J. K. R., Felten, J. J., Cho, B. & Nordine, P. C. Glass fibres of pure and erbium- or neodymium-doped yttria-alumina compositions. Nature 393, 769–771 (1998). (10.1038/31662) / Nature by JKR Weber (1998)
  39. Wall, J. J., Weber, R., Kim, J., Liaw, P. K. & Choo, H. Aerodynamic levitation processing of a Zr-based bulk metallic glass. Mater. Sci. Eng. A 445-446, 219–222 (2007). (10.1016/j.msea.2006.09.014) / Mater. Sci. Eng. A by JJ Wall (2007)
  40. Neuefeind, J., Feygenson, M., Carruth, J., Hoffmann, R. & Chipley, K. K. The nanoscale ordered materials diffractometer NOMAD at the Spallation Neutron Source SNS. Nucl. Instrum. Methods B 287, 68–75 (2012). (10.1016/j.nimb.2012.05.037) / Nucl. Instrum. Methods B by J Neuefeind (2012)
  41. Proffen, T., Billinge, S. J. L., Egami, T. & Louca, D. Structural analysis of complex materials using the atomic pair distribution function - a practical guide. Z. Kristallogr. 218, 132–143 (2003). (10.1524/zkri.218.2.132.20664) / Z. Kristallogr. by T Proffen (2003)
  42. Juhás, P., Cherba, D. M., Duxbury, P. M., Punch, W. F. & Billinge, S. J. L. Ab initio determination of solid-state nanostructure. Nature 440, 655–658 (2006). (10.1038/nature04556) / Nature by P Juhás (2006)
  43. Farrow, C. L. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007). (10.1088/0953-8984/19/33/335219) / J. Phys. Condens. Matter by CL Farrow (2007)
  44. Roik, O. S., Kazimirov, V. P. & Galushko, S. M. The structure of the liquid Al62Cu25.5TM12.5 (TM=Mn, Ni, Fe) alloys. Phys. Chem. Liq. 51, 21–32 (2013). (10.1080/00319104.2012.673613) / Phys. Chem. Liq. by OS Roik (2013)
  45. Guo, F. et al. Structure of liquid Cu–Sb alloys by ab initio molecular dynamics simulations, high temperature X-ray diffraction, and resistivity. J. Mater. Sci. 48, 4438–4445 (2013). (10.1007/s10853-013-7262-4) / J. Mater. Sci. by F Guo (2013)
  46. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). (10.1103/PhysRevB.47.558) / Phys. Rev. B by G Kresse (1993)
  47. Gao, M. C. & Alman, D. E. Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504–4519 (2013). (10.3390/e15104504) / Entropy by MC Gao (2013)
  48. Roik, A. S., Anikeenko, A. V. & Medvedev, N. N. Polytetrahedral order and chemical short-range order in metallic melts. J. Struct. Chem. 54, 332–340 (2013). (10.1134/S002247661302008X) / J. Struct. Chem. by AS Roik (2013)
  49. Welk, B. A. et al. Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy 134, 193–199 (2013). (10.1016/j.ultramic.2013.06.006) / Ultramicroscopy by BA Welk (2013)
  50. Lucas, M. S. et al. Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl. Phys. Lett. 100, 2519071–2519074 (2012). (10.1063/1.4730327) / Appl. Phys. Lett. by MS Lucas (2012)
  51. Loudis, J. A. & Baker, I. α- and β-Mn precipitates in the spinodal Fe30Ni20Mn25Al25 alloy. Philos. Mag. 87, 5639–5656 (2007). (10.1080/14786430701708372) / Philos. Mag. by JA Loudis (2007)
  52. Oak Ridge National Laboratory, Center for Nanophase Materials Sciences http://www.cnms.ornl.gov (2014).
  53. Langford, R. M. & Petford-Long, A. K. Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J. Vac. Sci. Technol. A Vac. Surf. Films 19, 2186–2193 (2001). (10.1116/1.1378072) / J. Vac. Sci. Technol. A Vac. Surf. Films by RM Langford (2001)
  54. Kelly, T. F. & Miller, M. K. Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007). (10.1063/1.2709758) / Rev. Sci. Instrum. by TF Kelly (2007)
  55. USDOE. National Energy Technology Laboratory http://www.netl.doe.gov/ (2013).
  56. Kresse, G. & Furthmueller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  57. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blochl (1994)
  58. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  59. Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984). (10.1063/1.447334) / J. Chem. Phys. by S Nose (1984)
  60. Alfe, D., Gillan, M. J. & Price, G. D. The melting curve of iron at the pressures of the Earth's core from ab initio calculations. Nature 401, 462–464 (1999). (10.1038/46758) / Nature by D Alfe (1999)
  61. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006). (10.1038/nature04421) / Nature by HW Sheng (2006)
  62. Stixrude, L. & Karki, B. Structure and freezing of MgSiO3 liquid in earth's lower mantle. Science 310, 297–299 (2005). (10.1126/science.1116952) / Science by L Stixrude (2005)
  63. Raty, J.-Y., Schwegler, E. & Bonev, S. A. Electronic and structural transitions in dense liquid sodium. Nature 449, 448–451 (2007). (10.1038/nature06123) / Nature by J-Y Raty (2007)
  64. Chartrand, P. & Pelton, A. The modified quasi-chemical model: Part III. Two sublattices. Metall. Mater. Trans. A 32, 1397–1407 (2001). (10.1007/s11661-001-0229-0) / Metall. Mater. Trans. A by P Chartrand (2001)
  65. The Spallation Neutron Source http://neutrons.ornl.gov (2014).
  66. Huq, A., Hodges, J. P., Gourdon, O. & Heroux, L. Powgen: a third-generation high-resolution high-throughput powder diffraction instrument at the Spallation Neutron Source. Z. Kristallogr. Proc. 1, 127–135 (2011). / Z. Kristallogr. Proc. by A Huq (2011)
  67. Weber, J. K. R. et al. Neutron diffraction from levitated liquids - a technique for measurements under extreme conditions. Phys. Chem. Glasses 46, 487–491 (2005). / Phys. Chem. Glasses by JKR Weber (2005)
  68. APS Beamline 6-ID-D http://www.aps.anl.gov/Sectors/Sector6/6idd/ (2014).
Dates
Type When
Created 10 years, 7 months ago (Jan. 20, 2015, 5:20 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:27 a.m.)
Indexed 4 days, 15 hours ago (Aug. 29, 2025, 6:04 a.m.)
Issued 10 years, 7 months ago (Jan. 20, 2015)
Published 10 years, 7 months ago (Jan. 20, 2015)
Published Online 10 years, 7 months ago (Jan. 20, 2015)
Funders 0

None

@article{Santodonato_2015, title={Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6964}, DOI={10.1038/ncomms6964}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Santodonato, Louis J. and Zhang, Yang and Feygenson, Mikhail and Parish, Chad M. and Gao, Michael C. and Weber, Richard J.K. and Neuefeind, Joerg C and Tang, Zhi and Liaw, Peter K}, year={2015}, month=jan }