Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Gallo, P., Corradini, D., & Rovere, M. (2014). Widom line and dynamical crossovers as routes to understand supercritical water. Nature Communications, 5(1).

Authors 3
  1. P. Gallo (first)
  2. D. Corradini (additional)
  3. M. Rovere (additional)
References 44 Referenced 143
  1. Akiya, N. & Savage, P. E. Roles of water for chemical reactions in high-temperature water. Chem. Rev. 102, 2725–2750 (2002). (10.1021/cr000668w) / Chem. Rev. by N Akiya (2002)
  2. NATO Science Series E: Applied Science eds Kiran J., Debenedetti P. G., Peters J. 366Kluwer (2000).
  3. Huelsman, C. M. & Savage, P. E. Reaction pathways and kinetic modeling for phenol gasification in supercritical water. J. Supercrit. Fluids 81, 200–209 (2013). (10.1016/j.supflu.2013.05.012) / J. Supercrit. Fluids by CM Huelsman (2013)
  4. Savage, P. E. Organic chemical reactions in supercritical water. Chem. Rev. 99, 603–622 (1999). (10.1021/cr9700989) / Chem. Rev. by PE Savage (1999)
  5. McMillan, P. F. & Stanley, H. E. Going supercritical. Nat. Phys. 6, 479–480 (2010). (10.1038/nphys1711) / Nat. Phys. by PF McMillan (2010)
  6. Wernet, P. et al. Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. J. Chem. Phys. 123, 154503 (2005). (10.1063/1.2064867) / J. Chem. Phys. by P Wernet (2005)
  7. Lin, J. F. et al. High pressure-temperature Raman measurements of H2O melting to 22 GPa and 900 K. J. Chem. Phys. 121, 8423–8427 (2004). (10.1063/1.1784438) / J. Chem. Phys. by JF Lin (2004)
  8. Kimura, T., Kuwayama, Y. & Yagi, T. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique. J. Chem. Phys. 140, 074501 (2014). (10.1063/1.4865252) / J. Chem. Phys. by T Kimura (2014)
  9. Franks, F. Water: a Matrix for Life Second Edition Royal Society of Chemistry (2000).
  10. Debenedetti, P. G. Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003). (10.1088/0953-8984/15/45/R01) / J. Phys. Condens. Matter by PG Debenedetti (2003)
  11. Xu, L. et al. Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc. Natl Acad. Sci. USA 102, 16558–16562 (2005). (10.1073/pnas.0507870102) / Proc. Natl Acad. Sci. USA by L Xu (2005)
  12. Franzese, G. & Stanley, H. E. The Widom line of supercooled water. J. Phys. Condens. Matter 19, 205126 (2007). (10.1088/0953-8984/19/20/205126) / J. Phys. Condens. Matter by G Franzese (2007)
  13. Huang, C. et al. The inhomogeneous structure of water at ambient conditions. Proc. Natl Acad. Sci. USA 106, 15214–15218 (2009). (10.1073/pnas.0904743106) / Proc. Natl Acad. Sci. USA by C Huang (2009)
  14. Mallamace, F. et al. Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Natl Acad. Sci. USA 104, 424–428 (2007). (10.1073/pnas.0607138104) / Proc. Natl Acad. Sci. USA by F Mallamace (2007)
  15. Abascal, J. L. F. & Vega, C. Widom line and the liquid-liquid critical point for the TIP4P/2005 water model. J. Chem. Phys. 133, 234502 (2010). (10.1063/1.3506860) / J. Chem. Phys. by JLF Abascal (2010)
  16. Fuentevilla, D. A. & Anisimov, M. A. Scaled equation of state for supercooled water near the liquid-liquid critical point. Phys. Rev. Lett. 97, 195702 (2006). (10.1103/PhysRevLett.97.195702) / Phys. Rev. Lett. by DA Fuentevilla (2006)
  17. Banerjee, D., Bhat, S. N., Bhat, S. V. & Leporini, D. ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc. Natl Acad. Sci. USA 106, 11448–11453 (2009). (10.1073/pnas.0900734106) / Proc. Natl Acad. Sci. USA by D Banerjee (2009)
  18. Wikfeldt, K. T., Huang, C., Nilsson, A. & Pettersson, L. G. M. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water. J. Chem. Phys. 134, 214506 (2011). (10.1063/1.3594545) / J. Chem. Phys. by KT Wikfeldt (2011)
  19. Corradini, D., Rovere, M. & Gallo, P. A route to explain water anomalies from results on an aqueous solution of salt. J. Chem. Phys. 132, 134508 (2010). (10.1063/1.3376776) / J. Chem. Phys. by D Corradini (2010)
  20. Xu, L., Buldyrev, S. V., Angell, C. A. & Stanley, H. E. Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Phys. Rev. E 74, 031108 (2006). (10.1103/PhysRevE.74.031108) / Phys. Rev. E by L Xu (2006)
  21. Corradini, D., Buldyrev, S. V., Gallo, P. & Stanley, H. E. Effects of hydrophobic solutes on the liquid-liquid critical point. Phys. Rev. E 81, 061504 (2010). (10.1103/PhysRevE.81.061504) / Phys. Rev. E by D Corradini (2010)
  22. Corradini, D., Su, Z., Stanley, H. E. & Gallo, P. A molecular dynamics study of the equation of state and structure of supercooled aqueous solutions of methanol. J. Chem. Phys. 137, 184503 (2012). (10.1063/1.4767060) / J. Chem. Phys. by D Corradini (2012)
  23. Brazhkin, V. V., Fomin, Y. D., Lyapin, A. G., Ryzhov, V. N. & Tsiok, E. N. Widom line for the liquid-gas transition in Lennard-Jones system. J. Phys. Chem. B 115, 14112–14115 (2011). (10.1021/jp2039898) / J. Phys. Chem. B by VV Brazhkin (2011)
  24. Brazhkin, V. V. & Ryzhov, V. N. Van der Waals supercritical fluid: exact formulas for special lines. J. Chem. Phys. 135, 084503 (2011). (10.1063/1.3627231) / J. Chem. Phys. by VV Brazhkin (2011)
  25. Gorelli, F., Santoro, M., Scopigno, T., Krisch, M. & Ruocco, G. Liquidlike behavior of supercritical fluids. Phys. Rev. Lett. 97, 245702 (2006). (10.1103/PhysRevLett.97.245702) / Phys. Rev. Lett. by F Gorelli (2006)
  26. Simeoni, G. G. et al. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nat. Phys. 6, 503–507 (2010). (10.1038/nphys1683) / Nat. Phys. by GG Simeoni (2010)
  27. Gorelli, F. A. et al. Dynamics and Thermodynamics beyond the critical point. Sci. Rep. 3, 1203 (2013). (10.1038/srep01203) / Sci. Rep. by FA Gorelli (2013)
  28. Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005). (10.1063/1.2121687) / J. Chem. Phys. by JLF Abascal (2005)
  29. Vega, C. & Abascal, J. L. F. Simulating water with rigid non-polarizable models: a general perspective. Phys. Chem. Chem. Phys. 13, 19663–19688 (2011). (10.1039/c1cp22168j) / Phys. Chem. Chem. Phys. by C Vega (2011)
  30. Bhattacharjee, J. K., Ferrell, R. A., Basu, R. S. & Sengers, J. V. Crossover function for the critical viscosity of a classical fluid. Phys. Rev. A 24, 1469–1475 (1981). (10.1103/PhysRevA.24.1469) / Phys. Rev. A by JK Bhattacharjee (1981)
  31. Sengers, J. V., Perkins, R. A., Huber, M. L. & Friend, D. G. Viscosity of H2O in the critical region. Int. J. Thermophys. 30, 374–384 (2009). (10.1007/s10765-008-0551-5) / Int. J. Thermophys. by JV Sengers (2009)
  32. Chapman, S. & Cowling, T. G. The Mathematical Theory of Non-uniform Gases, Cambridge Mathematical Library Third Edition Cambridge University Press (1970).
  33. Poole, P. H., Becker, S. R., Sciortino, F. & Starr, F. W. Dynamical behavior near a liquid-liquid phase transition in simulations of supercooled water. J. Phys. Chem. B 115, 14176–14183 (2011). (10.1021/jp204889m) / J. Phys. Chem. B by PH Poole (2011)
  34. Gallo, P. & Rovere, M. Mode coupling and fragile to strong transition in supercooled TIP4P water. J. Chem. Phys. 137, 164503 (2012). (10.1063/1.4759262) / J. Chem. Phys. by P Gallo (2012)
  35. Picasso, G. C., Malaspina, D. C., Carignano, M. A. & Szleifer, I. Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water. J. Chem. Phys. 139, 044509 (2013). (10.1063/1.4816523) / J. Chem. Phys. by GC Picasso (2013)
  36. Wikfeldt, K. T., Nilsson, A. & Pettersson, L. G. M. Spatially inhomogeneous bimodal inherent structure of simulated liquid water. Phys. Chem. Chem. Phys. 13, 19918–19924 (2011). (10.1039/c1cp22076d) / Phys. Chem. Chem. Phys. by KT Wikfeldt (2011)
  37. Brazhkin, V. V., Fomin, Y. D., Lyapin, A. G., Ryzhov, V. N. & Trachenko, K. Two liquid states of matter: A dynamic line on a phase diagram. Phys. Rev. E 85, 031203 (2012). (10.1103/PhysRevE.85.031203) / Phys. Rev. E by VV Brazhkin (2012)
  38. Brazhkin, V. V. et al. ‘Liquid-gas’ transition in the supercritical region: fundamental changes in the particle dynamics. Phys. Rev. Lett. 111, 145901 (2013). (10.1103/PhysRevLett.111.145901) / Phys. Rev. Lett. by VV Brazhkin (2013)
  39. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). (10.1063/1.445869) / J. Chem. Phys. by WL Jorgensen (1983)
  40. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984). (10.1080/00268978400101201) / Mol. Phys. by S Nosé (1984)
  41. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). (10.1103/PhysRevA.31.1695) / Phys. Rev. A by WG Hoover (1985)
  42. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981). (10.1063/1.328693) / J. Appl. Phys. by M Parrinello (1981)
  43. Nosé, S. & Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983). (10.1080/00268978300102851) / Mol. Phys. by S Nosé (1983)
  44. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comp. 4, 435–447 (2008). (10.1021/ct700301q) / J. Chem. Theory Comp. by B Hess (2008)
Dates
Type When
Created 10 years, 8 months ago (Dec. 16, 2014, 8 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 9:26 p.m.)
Indexed 20 hours, 58 minutes ago (Aug. 21, 2025, 2:01 p.m.)
Issued 10 years, 8 months ago (Dec. 16, 2014)
Published 10 years, 8 months ago (Dec. 16, 2014)
Published Online 10 years, 8 months ago (Dec. 16, 2014)
Funders 0

None

@article{Gallo_2014, title={Widom line and dynamical crossovers as routes to understand supercritical water}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6806}, DOI={10.1038/ncomms6806}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Gallo, P. and Corradini, D. and Rovere, M.}, year={2014}, month=dec }