Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Akinwande, D., Petrone, N., & Hone, J. (2014). Two-dimensional flexible nanoelectronics. Nature Communications, 5(1).

Authors 3
  1. Deji Akinwande (first)
  2. Nicholas Petrone (additional)
  3. James Hone (additional)
References 100 Referenced 1,694
  1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech. 7, 699–712 (2012). Provides an overview of the basic optoelectronic properties of TMDs, which are important for evaluating their prospects for future applications. (10.1038/nnano.2012.193) / Nat Nanotech. by QH Wang (2012)
  2. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). Reviews the progress in synthesizing 2D materials beyond graphene, a key requirement for any practical usage. (10.1021/nn400280c) / ACS Nano by SZ Butler (2013)
  3. Meric, I. et al. Graphene field-effect transistors based on boron–nitride dielectrics. Proc. IEEE 101, 1609–1619 (2013). Elucidates the properties of h-BN and why it is ideal for graphene and by extension, 2D transistors. (10.1109/JPROC.2013.2257634) / Proc. IEEE by I Meric (2013)
  4. Schwierz, F. Graphene transistors: status, prospects, and problems. Proc. IEEE 101, 1567–1584 (2013). Reviews the progress in graphene electronics providing comparison to competing materials and perspectives on challenges that need to be addressed for future applications. (10.1109/JPROC.2013.2257633) / Proc. IEEE by F Schwierz (2013)
  5. Tao, L. et al. Inductively heated synthesized graphene with record transistor mobility on oxidized silicon substrates at room temperature. Appl. Phys. Lett. 103, 183115 (2013). (10.1063/1.4828501) / Appl. Phys. Lett. by L Tao (2013)
  6. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010). (10.1038/nphoton.2010.186) / Nat. Photonics by F Bonaccorso (2010)
  7. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). A report on the outstanding strength of graphene, a requirement for advanced flexible devices. (10.1126/science.1157996) / Science by C Lee (2008)
  8. Seol, J. H. et al. Two-Dimensional Phonon Transport in Supported Graphene. Science 328, 213–216 (2010). A report on the outstanding thermal conductivity of graphene, a property useful for thermal management on soft substrates. (10.1126/science.1184014) / Science by JH Seol (2010)
  9. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). (10.1126/science.1244358) / Science by L Wang (2013)
  10. Yoon, D., Son, Y.-W. & Cheong, H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11, 3227–3231 (2011). (10.1021/nl201488g) / Nano Lett. by D Yoon (2011)
  11. Wei, X., Fragneaud, B., Marianetti, C. A. & Kysar, J. W. Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys. Rev. B 80, 205407 (2009). (10.1103/PhysRevB.80.205407) / Phys. Rev. B by X Wei (2009)
  12. Wong, H.-S. P. & Akinwande, D. Carbon Nanotube and Graphene Device Physics Cambridge Univ. Press (2011). (10.1017/CBO9780511778124)
  13. Petrone, N. et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012). (10.1021/nl204481s) / Nano Lett. by N Petrone (2012)
  14. Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067 (2012). (10.1021/nl300904k) / Nano Lett. by Y Wu (2012)
  15. Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multi-layer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013). (10.1021/nl303583v) / Nano Lett. by S Das (2013)
  16. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012). (10.1021/nl301702r) / Nano Lett. by H Fang (2012)
  17. Chang, H.-Y. et al. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013). (10.1021/nn401429w) / ACS Nano by H-Y Chang (2013)
  18. Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013). (10.1021/nn402954e) / ACS Nano by G-H Lee (2013)
  19. Jiang, J.-W., Park, H. S. & Rabczuk, T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114, 064307 (2013). (10.1063/1.4818414) / J. Appl. Phys. by J-W Jiang (2013)
  20. Cooper, R. C. et al. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 87, 035423 (2013). (10.1103/PhysRevB.87.035423) / Phys. Rev. B by RC Cooper (2013)
  21. Yan, R. et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986–993 (2013). (10.1021/nn405826k) / ACS Nano by R Yan (2013)
  22. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004). (10.1038/nmat1134) / Nat. Mater. by K Watanabe (2004)
  23. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010). (10.1021/nl1022139) / Nano Lett. by L Song (2010)
  24. Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13, 550–554 (2013). (10.1021/nl304060g) / Nano Lett. by I Jo (2013)
  25. Paszkowicz, W., Pelka, J. B., Knapp, M., Szyszko, T. & Podsiadlo, S. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Appl. Phys. A 75, 431–435 (2002). (10.1007/s003390100999) / Appl. Phys. A by W Paszkowicz (2002)
  26. Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012). (10.1103/PhysRevLett.108.155501) / Phys. Rev. Lett. by P Vogt (2012)
  27. Li, X. et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418 (2013). (10.1103/PhysRevB.87.115418) / Phys. Rev. B by X Li (2013)
  28. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014). First report of the outstanding mobility of phosphorene, which is superior to all the current semiconducting TMDs. (10.1038/nnano.2014.35) / Nat. Nanotech. by L Li (2014)
  29. Wei, Q. & Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014). (10.1063/1.4885215) / Appl. Phys. Lett. by Q Wei (2014)
  30. Fei, R. et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Preprint at http://arxiv.org/abs/1405.2836 (2014).
  31. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). (10.1021/nn501226z) / ACS Nano by H Liu (2014)
  32. Lee, J. et al. 25GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano 7, 7744–7750 (2013). Report of state of the art flexible graphene transistor with highest mobility and flexibility, confirming its promise for GHz flexible electronics. (10.1021/nn403487y) / ACS Nano by J Lee (2013)
  33. Das, S., Gulotty, R., Sumant, A. V. & Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14, 2861–2866 (2014). (10.1021/nl5009037) / Nano Lett. by S Das (2014)
  34. Nathan, A. et al. Flexible electronics: the next ubiquitous platform. Proc. IEEE 100, 1486–1517 (2012). A comprehensive review of printed and organic transistors, covering progress and their relatively low mobilities, which limits their applications for high-performance flexible electronics. (10.1109/JPROC.2012.2190168) / Proc. IEEE by A Nathan (2012)
  35. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011). (10.1126/science.1206157) / Science by D-H Kim (2011)
  36. Granzner, R. et al. Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with Monte Carlo results. Microelectron. Eng. 83, 241–246 (2006). (10.1016/j.mee.2005.08.003) / Microelectron. Eng. by R Granzner (2006)
  37. Lee, S., Lee, K., Liu, C.-H., Kulkarni, G. S. & Zhong, Z. Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat. Commun. 3, 1018 (2012). (10.1038/ncomms2021) / Nat. Commun. by S Lee (2012)
  38. Petrone, N., Meric, I., Hone, J. & Shepard, K. L. Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121–125 (2012). (10.1021/nl303666m) / Nano Lett. by N Petrone (2012)
  39. Lee, J. et al. High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates. IEEE Electron Device Lett. 34, 172–174 (2013). (10.1109/LED.2012.2233707) / IEEE Electron Device Lett. by J Lee (2013)
  40. Song, H. S. et al. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 5, 9666–9670 (2013). (10.1039/c3nr01899g) / Nanoscale by HS Song (2013)
  41. Dodabalapur, A. Organic and polymer transistors for electronics. Mater. Today 9, 24–30 (2006). (10.1016/S1369-7021(06)71444-4) / Mater. Today by A Dodabalapur (2006)
  42. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). (10.1126/science.1182383) / Science by JA Rogers (2010)
  43. Wang, C. et al. Self-aligned, extremely high frequency III–V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates. Nano Lett. 12, 4140–4145 (2012). (10.1021/nl301699k) / Nano Lett. by C Wang (2012)
  44. Zhou, H. et al. Fast flexible electronics with strained silicon nanomembranes. Sci. Rep. 3, 129 (2013). / Sci. Rep. by H Zhou (2013)
  45. Yoon, C., Cho, G. & Kim, S. Electrical characteristics of GaAs nanowire-based MESFETs on flexible plastics. IEEE Trans. Electron Devices 58, 1096–1101 (2011). (10.1109/TED.2011.2107518) / IEEE Trans. Electron Devices by C Yoon (2011)
  46. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011). (10.1038/nn.2973) / Nat. Neurosci. by J Viventi (2011)
  47. Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). (10.1038/ncomms1767) / Nat. Commun. by MS Mannoor (2012)
  48. Macmillan, N. H. Theoretical strength of solids. J. Mater. Sci. 7, 239–254 (1972). (10.1007/BF02403513) / J. Mater. Sci. by NH Macmillan (1972)
  49. Beyer, M. K. The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 112, 7307–7312 (2000). (10.1063/1.481330) / J. Chem. Phys. by MK Beyer (2000)
  50. Lee, G. H. et al. High-strength chemical-vapor deposited graphene and grain boundaries. Science 340, 1073–1076 (2013). (10.1126/science.1235126) / Science by GH Lee (2013)
  51. Chen, J. H. et al. Printed graphene circuits. Adv. Mater. 19, 3623–3627 (2007). (10.1002/adma.200701059) / Adv. Mater. by JH Chen (2007)
  52. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). A scientific breakthrough demonstrating the growth of large-area monolayer graphene. (10.1126/science.1171245) / Science by X Li (2009)
  53. Suk, J. W. et al. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano. Lett. 4, 1462–1467 (2013). (10.1021/nl304420b) / Nano. Lett. by JW Suk (2013)
  54. Lee, J. et al. in 2012 IEEE International Electron Devices Meeting (IEDM) Technical Digest. 14.16.11–14.16.14.
  55. Mattevi, C., Kim, H. & Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2010). (10.1039/C0JM02126A) / J. Mater. Chem. by C Mattevi (2010)
  56. Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad Sci. USA 109, 11588–11592 (2012). (10.1073/pnas.1205696109) / Proc. Natl Acad Sci. USA by R Cheng (2012)
  57. Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010). (10.1126/science.1184289) / Science by Y-M Lin (2010)
  58. Lee, J. et al. in 2013 IEEE International Electron Devices Meeting (IEDM) Technical Digest. 19.12.11–19.12.14.
  59. Lee, J. et al. Multi-finger flexible graphene field effect transistors with high bendability. Appl. Phys. Lett. 101, 252109 (2012). (10.1063/1.4772541) / Appl. Phys. Lett. by J Lee (2012)
  60. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012). (10.1021/nl301335q) / Nano Lett. by J Pu (2012)
  61. Chang, H.-Y., Zhu, W. & Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 104, 113504 (2014). (10.1063/1.4868536) / Appl. Phys. Lett. by H-Y Chang (2014)
  62. Bao, W., Cai, X., Kim, D., Sridhara, K. & Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104–042104 (2013). (10.1063/1.4789365) / Appl. Phys. Lett. by W Bao (2013)
  63. Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014). / Phys. Rev. X by N Ma (2014)
  64. Datta, S. Quantum Transport: Atom to Transistor Cambridge Univ. Press (2005). (10.1017/CBO9781139164313)
  65. Nayak, A. P. et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731 (2014). (10.1038/ncomms4731) / Nat. Commun. by AP Nayak (2014)
  66. Thanasis Georgiou, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotech. 8, 100–103 (2012). (10.1038/nnano.2012.224) / Nat. Nanotech. by Thanasis Georgiou (2012)
  67. Larentis, S., Fallahazad, B. & Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101, 223104 (2012). (10.1063/1.4768218) / Appl. Phys. Lett. by S Larentis (2012)
  68. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotech. 9, 262–267 (2014). (10.1038/nnano.2014.25) / Nat. Nanotech. by BWH Baugher (2014)
  69. McDonnell, S., Addou, R., Buie, C., Wallace, R. M. & Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880–2888 (2014). (10.1021/nn500044q) / ACS Nano by S McDonnell (2014)
  70. Yan, Z. et al. Controlled modulation of electronic properties of graphene by self-assembled monolayers on SiO2 substrates. ACS Nano 5, 1535–1540 (2011). (10.1021/nn1034845) / ACS Nano by Z Yan (2011)
  71. Jo, I. et al. Low-frequency acoustic phonon temperature distribution in electrically biased graphene. Nano Lett. 11, 85–90 (2010). (10.1021/nl102858c) / Nano Lett. by I Jo (2010)
  72. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5, 574–578 (2010). (10.1038/nnano.2010.132) / Nat. Nanotech. by S Bae (2010)
  73. Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 023112–023114 (2013). (10.1063/1.4776707) / Appl. Phys. Lett. by T Kobayashi (2013)
  74. Wang, X. et al. Direct delamination of graphene for high-performance plastic electronics. Small 10, 694–698 (2014). (10.1002/smll.201301892) / Small by X Wang (2014)
  75. Yoon, T. et al. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett. 12, 1448–1452 (2012). (10.1021/nl204123h) / Nano Lett. by T Yoon (2012)
  76. Sun, D.-M. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotech. 6, 156–161 (2011). (10.1038/nnano.2011.1) / Nat. Nanotech. by D-M Sun (2011)
  77. Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013). (10.1038/nmat3711) / Nat. Mater. by C Wang (2013)
  78. Chia-Yu, W. et al. High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator. IEEE Electron Device Lett. 32, 90–92 (2011). (10.1109/LED.2010.2084559) / IEEE Electron Device Lett. by W Chia-Yu (2011)
  79. Li, Y. V., Ramirez, J. I., Sun, K. G. & Jackson, T. N. Low-voltage double-gate ZnO thin-film transistor circuits. IEEE Electron Device Lett. 34, 891–893 (2013). (10.1109/LED.2013.2263193) / IEEE Electron Device Lett. by YV Li (2013)
  80. Zhai, Y., Mathew, L., Rao, R., Xu, D. & Banerjee, S. K. High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12, 5609–5615 (2012). (10.1021/nl302735f) / Nano Lett. by Y Zhai (2012)
  81. Kim, H.-S. et al. Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors, and logic gates on plastic substrates. Appl. Phys. Lett. 95, 183504 (2009). (10.1063/1.3256223) / Appl. Phys. Lett. by H-S Kim (2009)
  82. Defrance, N. et al. Fabrication, characterization, and physical analysis of AlGaN/GaN HEMTs on flexible substrates. IEEE T Electron Dev. 60, 1054–1059 (2013). (10.1109/TED.2013.2238943) / IEEE T Electron Dev. by N Defrance (2013)
  83. Snow, E. S., Campbell, P. M., Ancona, M. G. & Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86, 033105 (2005). (10.1063/1.1854721) / Appl. Phys. Lett. by ES Snow (2005)
  84. Li, J., Medhekar, N. V. & Shenoy, V. B. Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. J. Phys. Chem. C 117, 15842–15848 (2013). (10.1021/jp403986v) / J. Phys. Chem. C by J Li (2013)
  85. Tahk, D., Lee, H. H. & Khang, D. Y. Elastic moduli of organic electronic materials by the Buckling method. Macromolecules 42, 7079–7083 (2009). (10.1021/ma900137k) / Macromolecules by D Tahk (2009)
  86. Madou, M. J. Fundamentals of Microfabrication: the Science of Miniaturization 2nd edn CRC Press (2002).
  87. Song, K. et al. Fully flexible solution-deposited ZnO thin-film transistors. Adv. Mater. 22, 4308–4312 (2010). (10.1002/adma.201002163) / Adv. Mater. by K Song (2010)
  88. Cao, Q. et al. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 18, 304–309 -+ (2006). (10.1002/adma.200501740) / Adv. Mater. by Q Cao (2006)
  89. Agrawal, R., Peng, B. & Espinosa, H. D. Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett. 9, 4177–4183 (2009). (10.1021/nl9023885) / Nano Lett. by R Agrawal (2009)
  90. Rossi, M. & Meo, M. On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos. Sci. Technol. 69, 1394–1398 (2009). (10.1016/j.compscitech.2008.09.010) / Compos. Sci. Technol. by M Rossi (2009)
  91. Sekitani, T. et al. Bending experiment on pentacene field-effect transistors on plastic films. Appl. Phys. Lett. 86, 073511 (2005). (10.1063/1.1868868) / Appl. Phys. Lett. by T Sekitani (2005)
  92. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011). (10.1021/nn203879f) / ACS Nano by S Bertolazzi (2011)
  93. El-Mahalawy, S. H. & Evans, B. L. The thermal expansion of 2H-MoS2, 2H-MoSe2 and 2H-WSe2 between 20 and 800degreesC. J. Appl. Crystallogr. 9, 403–406 (1976). (10.1107/S0021889876011709) / J. Appl. Crystallogr. by SH El-Mahalawy (1976)
  94. Muratore, C. et al. Thermal anisotropy in nano-crystalline MoS2 thin films. Phys. Chem. Chem. Phys. 16, 1008–1014 (2014). (10.1039/C3CP53746C) / Phys. Chem. Chem. Phys. by C Muratore (2014)
  95. Fiori, G., Szafranek, B. N., Iannaccone, G. & Neumaier, D. Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 103, 233509 (2013). (10.1063/1.4840175) / Appl. Phys. Lett. by G Fiori (2013)
  96. Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013). (10.1021/nl304777e) / Nano Lett. by W Liu (2013)
  97. Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004). (10.1063/1.1723695) / Appl. Phys. Lett. by V Podzorov (2004)
  98. Feng, L.-P., Li, N., Yang, M.-H. & Liu, Z.-T. Effect of pressure on elastic, mechanical and electronic properties of WSe2: a first-principles study. Mater. Res. Bull. 50, 503–508 (2014). (10.1016/j.materresbull.2013.11.016) / Mater. Res. Bull. by L-P Feng (2014)
  99. Dominguez-Meister, S., Justo, A. & Sanchez-Lopez, J. C. Synthesis and tribological properties of WSex films prepared by magnetron sputtering. Mater. Chem. Phys. 142, 186–194 (2013). (10.1016/j.matchemphys.2013.07.004) / Mater. Chem. Phys. by S Dominguez-Meister (2013)
  100. Mavrokefalos, A., Nguyen, N. T., Pettes, M. T., Johnson, D. C. & Shi, L. In-plane thermal conductivity of disordered layered WSe2 and (W)x(WSe2)y superlattice films. Appl. Phys. Lett. 91, 171912 (2007). (10.1063/1.2800888) / Appl. Phys. Lett. by A Mavrokefalos (2007)
Dates
Type When
Created 10 years, 8 months ago (Dec. 17, 2014, 10:03 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 9:29 p.m.)
Indexed 11 hours, 23 minutes ago (Aug. 21, 2025, 1:59 p.m.)
Issued 10 years, 8 months ago (Dec. 17, 2014)
Published 10 years, 8 months ago (Dec. 17, 2014)
Published Online 10 years, 8 months ago (Dec. 17, 2014)
Funders 0

None

@article{Akinwande_2014, title={Two-dimensional flexible nanoelectronics}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6678}, DOI={10.1038/ncomms6678}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Akinwande, Deji and Petrone, Nicholas and Hone, James}, year={2014}, month=dec }