Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
185
Referenced
587
-
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). A review of the nine temptative hallmarks of aging.
(
10.1016/j.cell.2013.05.039
) / Cell by C Lopez-Otin (2013) -
Selkoe, D. J. Alzheimer’s disease. Cold Spring Harb. Perspect. Biol. 3, pii: a004457 (2011).
(
10.1101/cshperspect.a004457
) / Cold Spring Harb. Perspect. Biol. by DJ Selkoe (2011) -
Bosco, D. A., LaVoie, M. J., Petsko, G. A. & Ringe, D. Proteostasis and movement disorders: Parkinson’s disease and amyotrophic lateral sclerosis. Cold Spring Harb. Perspect. Biol. 3, a007500 (2011).
(
10.1101/cshperspect.a007500
) / Cold Spring Harb. Perspect. Biol. by DA Bosco (2011) -
Finkbeiner, S. Huntington's Disease. Cold Spring Harb. Perspect. Biol 3, a007476 (2011).
(
10.1101/cshperspect.a007476
) / Cold Spring Harb. Perspect. Biol by S Finkbeiner (2011) -
Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).
(
10.1146/annurev.biochem.052308.114844
) / Annu. Rev. Biochem. by ET Powers (2009) -
Calderwood, S. K., Murshid, A. & Prince, T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review. Gerontology 55, 550–558 (2009).
(
10.1159/000225957
) / Gerontology by SK Calderwood (2009) -
Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).
(
10.1038/nature10317
) / Nature by FU Hartl (2011) -
Morimoto, R. I. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 76, 91–99 (2011).
(
10.1101/sqb.2012.76.010637
) / Cold Spring Harb. Symp. Quant. Biol. by RI Morimoto (2011) -
Soti, C. & Csermely, P. Aging and molecular chaperones. Exp. Gerontol. 38, 1037–1040 (2003).
(
10.1016/S0531-5565(03)00185-2
) / Exp. Gerontol. by C Soti (2003) -
Taylor, R. C. & Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3, a004440 (2011).
(
10.1101/cshperspect.a004440
) / Cold Spring Harb. Perspect. Biol. by RC Taylor (2011) -
Tanaka, K. & Matsuda, N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta 1843, 197–204 (2014).
(
10.1016/j.bbamcr.2013.03.012
) / Biochim. Biophys. Acta by K Tanaka (2014) -
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).
(
10.1146/annurev.biochem.78.081507.101607
) / Annu. Rev. Biochem. by D Finley (2009) -
Nixon, R. A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).
(
10.1038/nm.3232
) / Nat. Med. by RA Nixon (2013) -
Wong, E. & Cuervo, A. M. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb. Perspect. Biol. 2, a006734 (2010).
(
10.1101/cshperspect.a006734
) / Cold Spring Harb. Perspect. Biol. by E Wong (2010) -
Schmidt, M. & Finley, D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843, 13–25 (2014).
(
10.1016/j.bbamcr.2013.08.012
) / Biochim. Biophys. Acta by M Schmidt (2014) -
Stadtmueller, B. M. & Hill, C. P. Proteasome activators. Mol. Cell 41, 8–19 (2011).
(
10.1016/j.molcel.2010.12.020
) / Mol. Cell by BM Stadtmueller (2011) -
Murata, S. et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349–1353 (2007).
(
10.1126/science.1141915
) / Science by S Murata (2007) -
Jung, T., Höhn, A. & Grune, T. The proteasome and the degradation of oxidized proteins: partII—proteinoxidationandproteasomaldegradation. Redox Biol. 2, 99–104 (2013).
(
10.1016/j.redox.2013.12.008
) / Redox Biol. by T Jung (2013) -
Tanaka, K. The proteasome: from basic mechanisms to emerging roles. Keio J. Med. 62, 1–12 (2013).
(
10.2302/kjm.2012-0006-RE
) / Keio J. Med. by K Tanaka (2013) -
Egan, D., Kim, J., Shaw, R. J. & Guan, K. L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7, 643–644 (2011).
(
10.4161/auto.7.6.15123
) / Autophagy by D Egan (2011) -
Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).
(
10.1016/j.cell.2011.07.030
) / Cell by DC Rubinsztein (2011) -
Martinez-Vicente, M. & Cuervo, A. M. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 6, 352–361 (2007).
(
10.1016/S1474-4422(07)70076-5
) / Lancet Neurol. by M Martinez-Vicente (2007) -
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).
(
10.1038/nature06639
) / Nature by N Mizushima (2008) -
Mizushima, N. & Levine, B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823–830 (2010).
(
10.1038/ncb0910-823
) / Nat. Cell Biol. by N Mizushima (2010) -
Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).
(
10.1016/j.cell.2011.10.026
) / Cell by N Mizushima (2011) -
Cuervo, A. M. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol. Metab. 21, 142–150 (2010).
(
10.1016/j.tem.2009.10.003
) / Trends Endocrinol. Metab. by AM Cuervo (2010) -
He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).
(
10.1146/annurev-genet-102808-114910
) / Annu. Rev. Genet. by C He (2009) -
Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539–545 (2003).
(
10.1016/S1534-5807(03)00296-X
) / Dev. Cell by DJ Klionsky (2003) -
Furuta, N., Fujita, N., Noda, T., Yoshimori, T. & Amano, A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21, 1001–1010 (2010).
(
10.1091/mbc.e09-08-0693
) / Mol. Biol. Cell by N Furuta (2010) -
Rubinsztein, D. C. et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11–22 (2005).
(
10.4161/auto.1.1.1513
) / Autophagy by DC Rubinsztein (2005) -
Renna, M. et al. IGF-1 receptor antagonism inhibits autophagy. Hum. Mol. Genet. 22, 4528–4544 (2013).
(
10.1093/hmg/ddt300
) / Hum. Mol. Genet. by M Renna (2013) -
Lee, I. H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl Acad. Sci. USA 105, 3374–3379 (2008).
(
10.1073/pnas.0712145105
) / Proc. Natl Acad. Sci. USA by IH Lee (2008) -
Ferrington, D. A., Husom, A. D. & Thompson, L. V. Altered proteasome structure, function, and oxidation in aged muscle. FASEB J. 19, 644–646 (2005).
(
10.1096/fj.04-2578fje
) / FASEB J. by DA Ferrington (2005) -
Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999). Through gene expression analysis of skeletal muscle of aged and caloric restricted mice several proteasome-related genes are found to be upregulated.
(
10.1126/science.285.5432.1390
) / Science by CK Lee (1999) -
Ly, D. H., Lockhart, D. J., Lerner, R. A. & Schultz, P. G. Mitotic misregulation and human aging. Science 287, 2486–2492 (2000).
(
10.1126/science.287.5462.2486
) / Science by DH Ly (2000) -
Vernace, V. A., Arnaud, L., Schmidt-Glenewinkel, T. & Figueiredo-Pereira, M. E. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 21, 2672–2682 (2007).
(
10.1096/fj.06-6751com
) / FASEB J. by VA Vernace (2007) -
Andersson, V., Hanzen, S., Liu, B., Molin, M. & Nystrom, T. Enhancing protein disaggregation restores proteasome activity in aged cells. Aging 5, 802–812 (2013).
(
10.18632/aging.100613
) / Aging by V Andersson (2013) -
Grune, T., Jung, T., Merker, K. & Davies, K. J. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 36, 2519–2530 (2004).
(
10.1016/j.biocel.2004.04.020
) / Int. J. Biochem. Cell Biol. by T Grune (2004) -
Saez, I. & Vilchez, D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genomics 15, 38–51 (2014).
(
10.2174/138920291501140306113344
) / Curr. Genomics by I Saez (2014) -
Chondrogianni, N. et al. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J. Biol. Chem. 278, 28026–28037 (2003).
(
10.1074/jbc.M301048200
) / J. Biol. Chem. by N Chondrogianni (2003) -
Min, J. N. et al. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol. Cell. Biol. 28, 4018–4025 (2008).
(
10.1128/MCB.00296-08
) / Mol. Cell. Biol. by JN Min (2008) -
Cuervo, A. M. Autophagy and aging: keeping that old broom working. Trends Genet. 24, 604–612 (2008).
(
10.1016/j.tig.2008.10.002
) / Trends Genet. by AM Cuervo (2008) - Yen, W. L. & Klionsky, D. J. How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda) 23, 248–262 (2008). / Physiology (Bethesda) by WL Yen (2008)
-
Terman, A. The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes. Gerontology 41, (Suppl 2): 319–326 (1995).
(
10.1159/000213753
) / Gerontology by A Terman (1995) -
Lipinski, M. M. et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 107, 14164–14169 (2010).
(
10.1073/pnas.1009485107
) / Proc. Natl Acad. Sci. USA by MM Lipinski (2010) -
Carames, B., Taniguchi, N., Otsuki, S., Blanco, F. J. & Lotz, M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis. Rheum. 62, 791–801 (2010).
(
10.1002/art.27305
) / Arthritis. Rheum. by B Carames (2010) -
Donati, A. et al. Age-related changes in the regulation of autophagic proteolysis in rat isolated hepatocytes. J. Gerontol. A Biol. Sci. Med. Sci. 56, B288–B293 (2001).
(
10.1093/gerona/56.7.B288
) / J. Gerontol. A Biol. Sci. Med. Sci. by A Donati (2001) -
Cuervo, A. M. & Dice, J. F. Age-related decline in chaperone-mediated autophagy. J. Biol. Chem. 275, 31505–31513 (2000). There is an age-dependent decline in the rates of chaperone-mediated autophagy, caused by reduced levels of the chaperone receptor LAMP2a.
(
10.1074/jbc.M002102200
) / J. Biol. Chem. by AM Cuervo (2000) -
Kiffin, R. et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J. Cell Sci. 120, 782–791 (2007).
(
10.1242/jcs.001073
) / J. Cell Sci. by R Kiffin (2007) -
Bandyopadhyay, U., Kaushik, S., Varticovski, L. & Cuervo, A. M. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol. Cell. Biol. 28, 5747–5763 (2008).
(
10.1128/MCB.02070-07
) / Mol. Cell. Biol. by U Bandyopadhyay (2008) -
Nardai, G., Csermely, P. & Soti, C. Chaperone function and chaperone overload in the aged. A preliminary analysis. Exp. Gerontol. 37, 1257–1262 (2002).
(
10.1016/S0531-5565(02)00134-1
) / Exp. Gerontol. by G Nardai (2002) -
Torres, C., Lewis, L. & Cristofalo, V. J. Proteasome inhibitors shorten replicative life span and induce a senescent-like phenotype of human fibroblasts. J. Cell. Physiol. 207, 845–853 (2006).
(
10.1002/jcp.20630
) / J. Cell. Physiol. by C Torres (2006) -
Ghazi, A., Henis-Korenblit, S. & Kenyon, C. Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc. Natl Acad. Sci. USA 104, 5947–5952 (2007).
(
10.1073/pnas.0700638104
) / Proc. Natl Acad. Sci. USA by A Ghazi (2007) -
Vilchez, D. et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489, 263–268 (2012). Ablation of germline in C. elegans results in an increased, rpn-6 dependent, proteasome activity and proteotoxic resistance in somatic tissues.
(
10.1038/nature11315
) / Nature by D Vilchez (2012) -
Tomaru, U. et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am. J. Pathol. 180, 963–972 (2012). A transgenic mouse with decreased proteasomal chymotrypsin-like activity exhibits a shortened lifespan, premature age-related phenotypes and aggravation of age-related metabolic disorders.
(
10.1016/j.ajpath.2011.11.012
) / Am. J. Pathol. by U Tomaru (2012) -
Li, L. et al. REGgamma deficiency promotes premature aging via the casein kinase 1 pathway. Proc. Natl Acad. Sci. USA 110, 11005–11010 (2013). PA28γ deficiency promotes premature aging in mice.
(
10.1073/pnas.1308497110
) / Proc. Natl Acad. Sci. USA by L Li (2013) -
Matecic, M. et al. A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet. 6, e1000921 (2010).
(
10.1371/journal.pgen.1000921
) / PLoS Genet. by M Matecic (2010) -
Hars, E. S. et al. Autophagy regulates ageing in C. elegans. Autophagy 3, 93–95 (2007).
(
10.4161/auto.3636
) / Autophagy by ES Hars (2007) -
Toth, M. L. et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4, 330–338 (2008).
(
10.4161/auto.5618
) / Autophagy by ML Toth (2008) -
Simonsen, A. et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176–184 (2008). Enhancement of autophagy in the nervous system of D. melanogaster extends lifespan and confers protection against oxidative stress and protein accumulation.
(
10.4161/auto.5269
) / Autophagy by A Simonsen (2008) -
Fredriksson, A. et al. Effects of aging and reproduction on protein quality control in soma and gametes of Drosophila melanogaster. Aging cell 11, 634–643 (2012). Although proteasome activity declines in somatic tissues during the ageing process, maturating oocytes and gonads maintain their high activity compared to age-matched somatic tissues.
(
10.1111/j.1474-9726.2012.00823.x
) / Aging cell by A Fredriksson (2012) -
Tsakiri, E. N. et al. Differential regulation of proteasome functionality in reproductive vs. somatic tissues of Drosophila during aging or oxidative stress. FASEB J. 27, 2407–2420 (2013).
(
10.1096/fj.12-221408
) / FASEB J. by EN Tsakiri (2013) -
Hamer, G., Matilainen, O. & Holmberg, C. I. A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat. Methods 7, 473–478 (2010).
(
10.1038/nmeth.1460
) / Nat. Methods by G Hamer (2010) -
Vilchez, D. et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489, 304–308 (2012). hESCs have increased proteasome activity.
(
10.1038/nature11468
) / Nature by D Vilchez (2012) -
Assou, S. et al. A gene expression signature shared by human mature oocytes and embryonic stem cells. BMC Genomics 10, 10 (2009).
(
10.1186/1471-2164-10-10
) / BMC Genomics by S Assou (2009) -
Buckley, S. M. et al. Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 11, 783–798 (2012).
(
10.1016/j.stem.2012.09.011
) / Cell Stem Cell by SM Buckley (2012) -
Pathare, G. R. et al. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc. Natl Acad. Sci. USA 109, 149–154 (2012).
(
10.1073/pnas.1117648108
) / Proc. Natl Acad. Sci. USA by GR Pathare (2012) -
Atkinson, S. P. et al. A putative role for the immunoproteasome in the maintenance of pluripotency in human embryonic stem cells. Stem Cells 30, 1373–1384 (2012).
(
10.1002/stem.1113
) / Stem Cells by SP Atkinson (2012) -
Hernebring, M., Brolen, G., Aguilaniu, H., Semb, H. & Nystrom, T. Elimination of damaged proteins during differentiation of embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 7700–7705 (2006).
(
10.1073/pnas.0510944103
) / Proc. Natl Acad. Sci. USA by M Hernebring (2006) -
Hernebring, M. et al. Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28. Sci. Rep. 3, 1381 (2013).
(
10.1038/srep01381
) / Sci. Rep. by M Hernebring (2013) -
Tra, T. et al. Autophagy in human embryonic stem cells. PLoS ONE 6, e27485 (2011).
(
10.1371/journal.pone.0027485
) / PLoS ONE by T Tra (2011) -
Sanchez-Danes, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Mol. Med. 4, 380–395 (2012).
(
10.1002/emmm.201200215
) / EMBO Mol. Med. by A Sanchez-Danes (2012) -
Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304 (1977).
(
10.1038/270301a0
) / Nature by TB Kirkwood (1977) -
Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).
(
10.1126/science.1080418
) / Science by H Aguilaniu (2003) -
Zhou, C. et al. Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159, 1–13 (2014).
(
10.1016/j.cell.2014.09.026
) / Cell by C Zhou (2014) -
Erjavec, N., Cvijovic, M., Klipp, E. & Nystrom, T. Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc. Natl Acad. Sci. USA 105, 18764–18769 (2008).
(
10.1073/pnas.0804550105
) / Proc. Natl Acad. Sci. USA by N Erjavec (2008) -
Signer, R. A. & Morrison, S. J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12, 152–165 (2013).
(
10.1016/j.stem.2013.01.001
) / Cell Stem Cell by RA Signer (2013) -
Oliver, L., Hue, E., Priault, M. & Vallette, F. M. Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev. 21, 2779–2788 (2012).
(
10.1089/scd.2012.0124
) / Stem Cells Dev. by L Oliver (2012) -
Salemi, S., Yousefi, S., Constantinescu, M. A., Fey, M. F. & Simon, H. U. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 22, 432–435 (2012).
(
10.1038/cr.2011.200
) / Cell Res. by S Salemi (2012) -
Vilchez, D., Simic, M. S. & Dillin, A. Proteostasis and aging of stem cells. Trends Cell Biol. 24, 161–170 (2014).
(
10.1016/j.tcb.2013.09.002
) / Trends Cell Biol. by D Vilchez (2014) -
Wang, C., Liang, C. C., Bian, Z. C., Zhu, Y. & Guan, J. L. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat. Neurosci. 16, 532–542 (2013).
(
10.1038/nn.3365
) / Nat. Neurosci. by C Wang (2013) - Chen, C., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009). / Sci. Signal. by C Chen (2009)
-
Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013).
(
10.1038/nature11895
) / Nature by MR Warr (2013) -
Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).
(
10.1038/nrm3507
) / Nat. Rev. Mol. Cell Biol. by A Eijkelenboom (2013) -
Matsuda, N. & Tanaka, K. Does impairment of the ubiquitin-proteasome system or the autophagy-lysosome pathway predispose individuals to neurodegenerative disorders such as Parkinson’s disease? J. Alzheimers Dis. 19, 1–9 (2010).
(
10.3233/JAD-2010-1231
) / J. Alzheimers Dis. by N Matsuda (2010) -
Zabel, C. et al. Proteasome and oxidative phoshorylation changes may explain why aging is a risk factor for neurodegenerative disorders. J. Proteomics 73, 2230–2238 (2010).
(
10.1016/j.jprot.2010.08.008
) / J. Proteomics by C Zabel (2010) -
Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A. M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 103, 5805–5810 (2006).
(
10.1073/pnas.0507436103
) / Proc. Natl Acad. Sci. USA by AC Massey (2006) -
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004). Rapamycin-mediated mTOR inhibition promotes aggregated huntingtin clearance through enhanced autophagy and protects against neurodegeneration in a fly model of Huntington’s Disease.
(
10.1038/ng1362
) / Nat. Genet. by B Ravikumar (2004) -
Cuervo, A. M. Autophagy in neurons: it is not all about food. Trends Mol. Med. 12, 461–464 (2006).
(
10.1016/j.molmed.2006.08.003
) / Trends Mol. Med. by AM Cuervo (2006) -
Keck, S., Nitsch, R., Grune, T. & Ullrich, O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J. Neurochem. 85, 115–122 (2003).
(
10.1046/j.1471-4159.2003.01642.x
) / J. Neurochem. by S Keck (2003) -
Tseng, B. P., Green, K. N., Chan, J. L., Blurton-Jones, M. & LaFerla, F. M. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol. Aging 29, 1607–1618 (2008).
(
10.1016/j.neurobiolaging.2007.04.014
) / Neurobiol. Aging by BP Tseng (2008) -
Grune, T. et al. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Arch. Biochem. Biophys. 500, 181–188 (2010).
(
10.1016/j.abb.2010.05.008
) / Arch. Biochem. Biophys. by T Grune (2010) -
Dickey, C. A. et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc. Natl Acad. Sci. USA 105, 3622–3627 (2008).
(
10.1073/pnas.0709180105
) / Proc. Natl Acad. Sci. USA by CA Dickey (2008) -
Lee, M. J., Lee, J. H. & Rubinsztein, D. C. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol. 105, 49–59 (2013).
(
10.1016/j.pneurobio.2013.03.001
) / Prog. Neurobiol. by MJ Lee (2013) -
Dange, T. et al. Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J. Biol. Chem. 286, 42830–42839 (2011).
(
10.1074/jbc.M111.300178
) / J. Biol. Chem. by T Dange (2011) -
Blair, L. J. et al. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J. Clin. Invest. 123, 4158–4169 (2013).
(
10.1172/JCI69003
) / J. Clin. Invest. by LJ Blair (2013) -
Nixon, R. A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113–122 (2005). Brains from humans with Alzheimer’s Disease present enhanced accumulation of autophagosomes even in early stages of the disease.
(
10.1093/jnen/64.2.113
) / J. Neuropathol. Exp. Neurol. by RA Nixon (2005) -
Yu, W. H. et al. Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol. 171, 87–98 (2005).
(
10.1083/jcb.200505082
) / J. Cell Biol. by WH Yu (2005) -
Cataldo, A. M. et al. Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14, 671–680 (1995).
(
10.1016/0896-6273(95)90324-0
) / Neuron by AM Cataldo (1995) -
Boland, B. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28, 6926–6937 (2008).
(
10.1523/JNEUROSCI.0800-08.2008
) / J. Neurosci. by B Boland (2008) -
Rozmahel, R. et al. Normal brain development in PS1 hypomorphic mice with markedly reduced gamma-secretase cleavage of betaAPP. Neurobiol. Aging 23, 187–194 (2002).
(
10.1016/S0197-4580(01)00267-6
) / Neurobiol. Aging by R Rozmahel (2002) -
Jaeger, P. A. et al. Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS ONE 5, e11102 (2010).
(
10.1371/journal.pone.0011102
) - Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118, 2190–2199 (2008). / J. Clin. Invest. by F Pickford (2008)
-
Vogiatzi, T., Xilouri, M., Vekrellis, K. & Stefanis, L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542–23556 (2008).
(
10.1074/jbc.M801992200
) / J. Biol. Chem. by T Vogiatzi (2008) -
Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).
(
10.1074/jbc.M300227200
) / J. Biol. Chem. by JL Webb (2003) -
McNaught, K. S., Perl, D. P., Brownell, A. L. & Olanow, C. W. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann. Neurol. 56, 149–162 (2004). Proteasome inhibition in rats causes Parkinson’s Disease-like phenotype, establishing a correlation between impaired proteasome inhibition and the onset of the disease.
(
10.1002/ana.20186
) / Ann. Neurol. by KS McNaught (2004) -
Bedford, L. et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 28, 8189–8198 (2008).
(
10.1523/JNEUROSCI.2218-08.2008
) / J. Neurosci. by L Bedford (2008) -
Wahl, C. et al. A comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson’s disease patients. J. Neural Transm. 115, 1141–1148 (2008).
(
10.1007/s00702-008-0054-3
) / J. Neural Transm. by C Wahl (2008) -
Tofaris, G. K., Layfield, R. & Spillantini, M. G. alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett. 509, 22–26 (2001).
(
10.1016/S0014-5793(01)03115-5
) / FEBS Lett. by GK Tofaris (2001) -
Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).
(
10.1126/science.1101738
) / Science by AM Cuervo (2004) -
Irrcher, I. et al. Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet. 19, 3734–3746 (2010).
(
10.1093/hmg/ddq288
) / Hum. Mol. Genet. by I Irrcher (2010) -
Plowey, E. D., Cherra, S. J. 3rd, Liu, Y. J. & Chu, C. T. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048–1056 (2008).
(
10.1111/j.1471-4159.2008.05217.x
) / J. Neurochem. by ED Plowey (2008) -
Tashiro, Y. et al. Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J. Biol. Chem. 287, 42984–42994 (2012).
(
10.1074/jbc.M112.417600
) / J. Biol. Chem. by Y Tashiro (2012) -
Holmberg, C. I., Staniszewski, K. E., Mensah, K. N., Matouschek, A. & Morimoto, R. I. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO. J. 23, 4307–4318 (2004). Aggregated mutant huntingtin cannot be efficiently degraded by the proteasome and irreversibly sequesters, in turn, the proteasome itself.
(
10.1038/sj.emboj.7600426
) / EMBO. J. by CI Holmberg (2004) -
Finkbeiner, S. & Mitra, S. The ubiquitin-proteasome pathway in Huntington's disease. Sci. World J. 8, 421–433 (2008).
(
10.1100/tsw.2008.60
) / Sci. World J. by S Finkbeiner (2008) -
Diaz-Hernandez, M. et al. Inhibition of 26S proteasome activity by huntingtin filaments but not inclusion bodies isolated from mouse and human brain. J. Neurochem. 98, 1585–1596 (2006).
(
10.1111/j.1471-4159.2006.03968.x
) / J. Neurochem. by M Diaz-Hernandez (2006) -
Ardley, H. C., Hung, C. C. & Robinson, P. A. The aggravating role of the ubiquitin-proteasome system in neurodegeneration. FEBS Lett. 579, 571–576 (2005).
(
10.1016/j.febslet.2004.12.058
) / FEBS Lett. by HC Ardley (2005) -
Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A. L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell 14, 95–104 (2004).
(
10.1016/S1097-2765(04)00151-0
) / Mol. Cell by P Venkatraman (2004) -
Bennett, E. J., Bence, N. F., Jayakumar, R. & Kopito, R. R. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351–365 (2005).
(
10.1016/j.molcel.2004.12.021
) / Mol. Cell by EJ Bennett (2005) -
Hipp, M. S. et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J. Cell Biol. 196, 573–587 (2012).
(
10.1083/jcb.201110093
) / J. Cell Biol. by MS Hipp (2012) -
Pratt, G. & Rechsteiner, M. Proteasomes cleave at multiple sites within polyglutamine tracts: activation by PA28gamma(K188E). J. Biol. Chem. 283, 12919–12925 (2008).
(
10.1074/jbc.M709347200
) / J. Biol. Chem. by G Pratt (2008) -
Qin, Z. H. et al. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum. Mol. Genet. 12, 3231–3244 (2003).
(
10.1093/hmg/ddg346
) / Hum. Mol. Genet. by ZH Qin (2003) -
Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).
(
10.1093/hmg/11.9.1107
) / Hum. Mol. Genet. by B Ravikumar (2002) -
Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol. 3, 331–338 (2007).
(
10.1038/nchembio883
) / Nat. Chem. Biol. by S Sarkar (2007) -
Martinez-Vicente, M. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat. Neurosci. 13, 567–576 (2010).
(
10.1038/nn.2528
) / Nat. Neurosci. by M Martinez-Vicente (2010) -
Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).
(
10.1074/jbc.M600364200
) / J. Biol. Chem. by M Shibata (2006) -
Atwal, R. S. & Truant, R. A stress sensitive ER membrane-association domain in Huntingtin protein defines a potential role for Huntingtin in the regulation of autophagy. Autophagy 4, 91–93 (2008).
(
10.4161/auto.5201
) / Autophagy by RS Atwal (2008) -
Ravikumar, B. et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37, 771–776 (2005).
(
10.1038/ng1591
) / Nat. Genet. by B Ravikumar (2005) -
Finkel, T., Serrano, M. & Blasco, M. A. The common biology of cancer and ageing. Nature 448, 767–774 (2007).
(
10.1038/nature05985
) / Nature by T Finkel (2007) -
Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761–772 (2005).
(
10.1038/nrc1716
) / Nat. Rev. Cancer by L Whitesell (2005) -
Maiuri, M. C. et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 16, 87–93 (2009).
(
10.1038/cdd.2008.131
) / Cell Death Differ. by MC Maiuri (2009) -
Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009).
(
10.1016/j.cell.2009.03.048
) / Cell by R Mathew (2009) -
Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011).
(
10.1016/j.molcel.2011.02.009
) / Mol. Cell by M Elgendy (2011) -
Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798–803 (2009).
(
10.1101/gad.519709
) / Genes Dev. by AR Young (2009) -
Chondrogianni, N., Petropoulos, I., Franceschi, C., Friguet, B. & Gonos, E. S. Fibroblast cultures from healthy centenarians have an active proteasome. Exp. Gerontol. 35, 721–728 (2000).
(
10.1016/S0531-5565(00)00137-6
) / Exp. Gerontol. by N Chondrogianni (2000) -
Perez, V. I. et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc. Natl Acad. Sci. USA 106, 3059–3064 (2009).
(
10.1073/pnas.0809620106
) / Proc. Natl Acad. Sci. USA by VI Perez (2009) -
Ungvari, Z. et al. Testing predictions of the oxidative stress hypothesis of aging using a novel invertebrate model of longevity: the giant clam (Tridacna derasa). J. Gerontol. A Biol. Sci. Med. Sci. 68, 359–367 (2013).
(
10.1093/gerona/gls159
) / J. Gerontol. A Biol. Sci. Med. Sci. by Z Ungvari (2013) -
Chen, Q., Thorpe, J., Dohmen, J. R., Li, F. & Keller, J. N. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Free Radic. Biol. Med. 40, 120–126 (2006).
(
10.1016/j.freeradbiomed.2005.08.048
) / Free Radic. Biol. Med. by Q Chen (2006) -
Dohmen, R. J., Willers, I. & Marques, A. J. Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. Biochim. Biophys. Acta 1773, 1599–1604 (2007).
(
10.1016/j.bbamcr.2007.05.015
) / Biochim. Biophys. Acta by RJ Dohmen (2007) -
Kruegel, U. et al. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 7, e1002253 (2011).
(
10.1371/journal.pgen.1002253
) / PLoS Genet. by U Kruegel (2011) -
Tonoki, A. et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell. Biol. 29, 1095–1106 (2009).
(
10.1128/MCB.01227-08
) / Mol. Cell. Biol. by A Tonoki (2009) -
Chondrogianni, N. & Gonos, E. S. Proteasome activation as a novel antiaging strategy. IUBMB Life 60, 651–655 (2008).
(
10.1002/iub.99
) / IUBMB Life by N Chondrogianni (2008) -
Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).
(
10.1038/nature08980
) / Nature by CJ Kenyon (2010) -
Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).
(
10.1016/j.cmet.2009.11.010
) / Cell Metab. by I Bjedov (2010) -
Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).
(
10.1038/nature08221
) / Nature by DE Harrison (2009) -
Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465 (2010).
(
10.1016/j.cmet.2010.05.001
) / Cell Metab. by P Kapahi (2010) -
Pyo, J. O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300 (2013). Ubiquitous autophagy enhancement in mice extends lifespan and alleviates the age-associated phenotypes.
(
10.1038/ncomms3300
) / Nat. Commun. by JO Pyo (2013) -
Zhang, C. & Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 14, 959–965 (2008).
(
10.1038/nm.1851
) / Nat. Med. by C Zhang (2008) -
Lapierre, L. R. et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 4, 2267 (2013).
(
10.1038/ncomms3267
) / Nat. Commun. by LR Lapierre (2013) -
Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).
(
10.1126/science.1204592
) / Science by C Settembre (2011) -
O'Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668–676 (2013).
(
10.1038/ncb2741
) / Nat. Cell Biol. by EJ O'Rourke (2013) -
Seo, H., Sonntag, K. C., Kim, W., Cattaneo, E. & Isacson, O. Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PLoS ONE 2, e238 (2007).
(
10.1371/journal.pone.0000238
) / PLoS ONE by H Seo (2007) -
Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442 (2006).
(
10.1093/hmg/ddi458
) / Hum. Mol. Genet. by Z Berger (2006) -
Caccamo, A., Majumder, S., Richardson, A., Strong, R. & Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J. Biol. Chem. 285, 13107–13120 (2010).
(
10.1074/jbc.M110.100420
) / J. Biol. Chem. by A Caccamo (2010) -
Spencer, B. et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci. 29, 13578–13588 (2009).
(
10.1523/JNEUROSCI.4390-09.2009
) / J. Neurosci. by B Spencer (2009) -
Panowski, S. H. & Dillin, A. Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol. Metab. 20, 259–264 (2009).
(
10.1016/j.tem.2009.03.006
) / Trends Endocrinol. Metab. by SH Panowski (2009) -
Flachsbart, F. et al. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc. Natl Acad. Sci. USA 106, 2700–2705 (2009).
(
10.1073/pnas.0809594106
) / Proc. Natl Acad. Sci. USA by F Flachsbart (2009) -
Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008).
(
10.1073/pnas.0705467105
) / Proc. Natl Acad. Sci. USA by Y Suh (2008) -
Matilainen, O., Arpalahti, L., Rantanen, V., Hautaniemi, S. & Holmberg, C. I. Insulin/IGF-1 signaling regulates proteasome activity through the deubiquitinating enzyme UBH-4. Cell Rep. 3, 1980–1995 (2013).
(
10.1016/j.celrep.2013.05.012
) / Cell Rep. by O Matilainen (2013) -
Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).
(
10.1126/science.1087782
) / Science by A Melendez (2003) -
Gelino, S. & Hansen, M. Autophagy—an emerging anti-aging mechanism. J. Clin. Exp. Pathol Suppl 4, doi:pii.006 (2012).
(
10.4172/2161-0681.S4-006
) -
Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).
(
10.1371/journal.pgen.0040024
) / PLoS Genet. by M Hansen (2008) -
Cohen, E. & Dillin, A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat. Rev. Neurosci. 9, 759–767 (2008).
(
10.1038/nrn2474
) / Nat. Rev. Neurosci. by E Cohen (2008) -
Cohen, E. et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139, 1157–1169 (2009).
(
10.1016/j.cell.2009.11.014
) / Cell by E Cohen (2009) -
Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).
(
10.1073/pnas.152161099
) / Proc. Natl Acad. Sci. USA by JF Morley (2002) -
Volovik, Y., Marques, F. C. & Cohen, E. The nematode Caenorhabditis elegans: a versatile model for the study of proteotoxicity and aging. Methods 68, 458–464 (2014).
(
10.1016/j.ymeth.2014.04.014
) / Methods by Y Volovik (2014) -
Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006).
(
10.1126/science.1124646
) / Science by E Cohen (2006) -
Florez-McClure, M. L., Hohsfield, L. A., Fonte, G., Bealor, M. T. & Link, C. D. Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3, 569–580 (2007).
(
10.4161/auto.4776
) / Autophagy by ML Florez-McClure (2007) -
Bartke, A. Growth hormone, insulin and aging: the benefits of endocrine defects. Exp. Gerontol. 46, 108–111 (2011).
(
10.1016/j.exger.2010.08.020
) / Exp. Gerontol. by A Bartke (2011) -
Liu, G., Rogers, J., Murphy, C. T. & Rongo, C. EGF signalling activates the ubiquitin proteasome system to modulate C. elegans lifespan. EMBO J. 30, 2990–3003 (2011).
(
10.1038/emboj.2011.195
) / EMBO J. by G Liu (2011) -
Kenyon, C. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann. NY Acad. Sci. 1204, 156–162 (2010).
(
10.1111/j.1749-6632.2010.05640.x
) / Ann. NY Acad. Sci. by C Kenyon (2010) -
Shemesh, N., Shai, N. & Ben-Zvi, A. Germline stem cell arrest inhibits the collapse of somatic proteostasis early in Caenorhabditis elegans adulthood. Aging Cell 12, 814–822 (2013).
(
10.1111/acel.12110
) / Aging Cell by N Shemesh (2013) -
Vilchez, D. et al. FOXO4 is necessary for neural differentiation of human embryonic stem cells. Aging Cell 12, 518–522 (2013).
(
10.1111/acel.12067
) / Aging Cell by D Vilchez (2013) -
Ermolaeva, M. A. et al. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 501, 416–420 (2013).
(
10.1038/nature12452
) / Nature by MA Ermolaeva (2013) -
Lapierre, L. R., Gelino, S., Melendez, A. & Hansen, M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr. Biol. 21, 1507–1514 (2011).
(
10.1016/j.cub.2011.07.042
) / Curr. Biol. by LR Lapierre (2011) -
Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span—from yeast to humans. Science 328, 321–326 (2010).
(
10.1126/science.1172539
) / Science by L Fontana (2010) -
Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).
(
10.1016/j.cell.2009.07.034
) / Cell by BM Zid (2009) -
Carrano, A. C., Liu, Z., Dillin, A. & Hunter, T. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460, 396–399 (2009).
(
10.1038/nature08130
) / Nature by AC Carrano (2009) -
Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447, 545–549 (2007).
(
10.1038/nature05904
) / Nature by NA Bishop (2007) -
Ferguson, A. A., Springer, M. G. & Fisher, A. L. skn-1-Dependent and -independent regulation of aip-1 expression following metabolic stress in Caenorhabditis elegans. Mol. Cell. Biol. 30, 2651–2667 (2010).
(
10.1128/MCB.01340-09
) / Mol. Cell. Biol. by AA Ferguson (2010) -
Stanhill, A. et al. An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol. Cell 23, 875–885 (2006).
(
10.1016/j.molcel.2006.07.023
) / Mol. Cell by A Stanhill (2006) -
Hassan, W. M., Merin, D. A., Fonte, V. & Link, C. D. AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer’s disease model. Hum. Mol. Genet. 18, 2739–2747 (2009).
(
10.1093/hmg/ddp209
) / Hum. Mol. Genet. by WM Hassan (2009) -
Yun, C. et al. Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 105, 7094–7099 (2008).
(
10.1073/pnas.0707025105
) / Proc. Natl Acad. Sci. USA by C Yun (2008) -
Kapeta, S., Chondrogianni, N. & Gonos, E. S. Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J. Biol. Chem. 285, 8171–8184 (2010).
(
10.1074/jbc.M109.031575
) / J. Biol. Chem. by S Kapeta (2010) -
Jia, K. & Levine, B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3, 597–599 (2007).
(
10.4161/auto.4989
) / Autophagy by K Jia (2007)
Dates
Type | When |
---|---|
Created | 10 years, 8 months ago (Dec. 8, 2014, 5:39 a.m.) |
Deposited | 2 years, 8 months ago (Jan. 5, 2023, 9:33 p.m.) |
Indexed | 1 day, 21 hours ago (Sept. 4, 2025, 9:42 a.m.) |
Issued | 10 years, 8 months ago (Dec. 8, 2014) |
Published | 10 years, 8 months ago (Dec. 8, 2014) |
Published Online | 10 years, 8 months ago (Dec. 8, 2014) |
@article{Vilchez_2014, title={The role of protein clearance mechanisms in organismal ageing and age-related diseases}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6659}, DOI={10.1038/ncomms6659}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Vilchez, David and Saez, Isabel and Dillin, Andrew}, year={2014}, month=dec }