Abstract
AbstractBy focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
References
35
Referenced
270
-
Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).
(
10.1038/nmat3649
) / Nat. Mater. by Z Wen (2013) -
Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).
(
10.1126/science.1126230
) / Science by EY Tsymbal (2006) -
Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).
(
10.1063/1.111832
) / Appl. Phys. Lett. by S Nakamura (1994) -
Iso, K. et al. High brightness blue InGaN/GaN light emitting diode on nonpolar m-plane bulk GaN substrate. Jpn. J. Appl. Phys. 46, L960–L962 (2007).
(
10.1143/JJAP.46.L960
) / Jpn. J. Appl. Phys. by K Iso (2007) -
Masui, H. et al. Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar and semipolar orientations. J. Phys. D. Appl. Phys. 42, 135106 (2009).
(
10.1088/0022-3727/42/13/135106
) / J. Phys. D. Appl. Phys. by H Masui (2009) -
Nellist, P. D. Electron microscopy: atomic resolution comes into phase. Nat. Phys. 8, 586–587 (2012).
(
10.1038/nphys2357
) / Nat. Phys. by PD Nellist (2012) -
Lohr, M. et al. Differential phase contrast 2.0—opening new ‘‘fields'' for an established technique. Ultramicroscopy 117, 7–14 (2012).
(
10.1016/j.ultramic.2012.03.020
) / Ultramicroscopy by M Lohr (2012) -
Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 8, 611–615 (2012).
(
10.1038/nphys2337
) / Nat. Phys. by N Shibata (2012) -
Tsymbal, E. Y. & Gruverman, A. Ferroelectric tunnel junctions: beyond the barrier. Nat. Mater. 12, 602–604 (2013).
(
10.1038/nmat3669
) / Nat. Mater. by EY Tsymbal (2013) -
Takeuchi, T. et al. Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36, L382–L385 (1997).
(
10.1143/JJAP.36.L382
) / Jpn. J. Appl. Phys. by T Takeuchi (1997) -
Ploessl, R., Chapman, J. N., Thompson, A. M., Zweck, J. & Hoffmann, H. Investigation of the micromagnetic structure of cross-tie walls in permalloy. J. Appl. Phys. 73, 2447–2452 (1993).
(
10.1063/1.353102
) / J. Appl. Phys. by R Ploessl (1993) -
Zweck, J., Zimmermann, T. & Schuhrke, T. TEM imaging and evalution of magnetic structures in Co/Cu multilayers. Ultramicroscopy 67, 153–162 (1997).
(
10.1016/S0304-3991(96)00107-6
) / Ultramicroscopy by J Zweck (1997) -
Sandweg, C. W. et al. Direct observation of domain wall structures in curved permalloy wires containing an antinotch. J. Appl. Phys. 103, 093906 (2008).
(
10.1063/1.2913318
) / J. Appl. Phys. by CW Sandweg (2008) -
Rose, H. Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251–267 (1977).
(
10.1016/S0304-3991(76)91538-2
) / Ultramicroscopy by H Rose (1977) -
Chapman, J., Batson, P., Waddell, E. & Ferrier, R. The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203–214 (1978).
(
10.1016/S0304-3991(78)80027-8
) / Ultramicroscopy by J Chapman (1978) -
Shibata, N. et al. New area detector for atomic-resolution scanning transmission electron microscopy. J. Electron Microsc. (Tokyo) 59, 473–479 (2010).
(
10.1093/jmicro/dfq014
) / J. Electron Microsc. (Tokyo) by N Shibata (2010) -
Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957).
(
10.1107/S0365110X57002194
) / Acta Crystallogr. by JM Cowley (1957) -
Bethe, H. Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. 87, 55–129 (1928).
(
10.1002/andp.19283921704
) / Ann. Phys. by H Bethe (1928) -
Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. A 45, 455–457 (1927).
(
10.1007/BF01329203
) / Z. Phys. A by P Ehrenfest (1927) - Rosenauer, A. & Schowalter, M. InSpringer Proceedings in Physics vol. 120, (eds Cullis A. G., Midgley P. A. 169–172Springer (2007). / Springer Proceedings in Physics by A Rosenauer (2007)
- Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. Wien2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties Technische Universität Wien: Austria, (2001).
-
Meyer, J. C. et al. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat. Mater. 10, 209–215 (2011).
(
10.1038/nmat2941
) / Nat. Mater. by JC Meyer (2011) -
Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R. & Van Tendeloo, G. Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011).
(
10.1038/nature09741
) / Nature by S Van Aert (2011) -
Jones, L. & Nellist, P. D. Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc. Microanal. 19, 1050–1060 (2013).
(
10.1017/S1431927613001402
) / Microsc. Microanal. by L Jones (2013) -
Jia, C. L. & Urban, K. Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 2001–2004 (2004).
(
10.1126/science.1093617
) / Science by CL Jia (2004) -
Findlay, S. D. et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903–923 (2010).
(
10.1016/j.ultramic.2010.04.004
) / Ultramicroscopy by SD Findlay (2010) -
Müller, K. et al. Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device. Appl. Phys. Lett. 101, 212110 (2012).
(
10.1063/1.4767655
) / Appl. Phys. Lett. by K Müller (2012) -
Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M. & Rodenburg, J. M. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 3, 730 (2011).
(
10.1038/ncomms1733
) / Nat. Commun. by MJ Humphry (2011) - Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil. Trans. R Soc. A 339, 521–553 (1992). / Phil. Trans. R Soc. A by JM Rodenburg (1992)
-
Rodenburg, J. M., McCallum, B. C. & Nellist, P. D. Experimental tests on double-resolution coherent imaging via STEM. Ultramicroscopy 48, 304–314 (1993).
(
10.1016/0304-3991(93)90105-7
) / Ultramicroscopy by JM Rodenburg (1993) -
Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).
(
10.1016/j.ultramic.2009.05.012
) / Ultramicroscopy by AM Maiden (2009) -
Mott, N. F. The scattering of electrons by atoms. Proc. R. Soc. Lond. A 127, 658–665 (1930).
(
10.1098/rspa.1930.0082
) / Proc. R. Soc. Lond. A by NF Mott (1930) -
Rosenauer, A., Schowalter, M., Glas, F. & Lamoen, D. First-principles calculations of 002 structure factors for electron scattering in strained InxGa1−xAs. Phys. Rev. B 72, 085326 (2005).
(
10.1103/PhysRevB.72.085326
) / Phys. Rev. B by A Rosenauer (2005) -
Schowalter, M., Rosenauer, A., Titantah, J. & Lamoen, D. Temperature-dependent Debye-Waller factors for semiconductors with the wurtzite-type structure. Acta Crystallogr. A 65, 227–231 (2009).
(
10.1107/S0108767309004966
) / Acta Crystallogr. A by M Schowalter (2009) -
Weickenmeier, A. & Kohl, H. Computation of absorptive form factors for high-energy electron diffraction. Acta Crystallogr. A 47, 590–597 (1991).
(
10.1107/S0108767391004804
) / Acta Crystallogr. A by A Weickenmeier (1991)
Dates
Type | When |
---|---|
Created | 10 years, 8 months ago (Dec. 15, 2014, 9:15 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 9:31 p.m.) |
Indexed | 2 days ago (Aug. 19, 2025, 6:13 a.m.) |
Issued | 10 years, 8 months ago (Dec. 15, 2014) |
Published | 10 years, 8 months ago (Dec. 15, 2014) |
Published Online | 10 years, 8 months ago (Dec. 15, 2014) |
@article{M_ller_2014, title={Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6653}, DOI={10.1038/ncomms6653}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Müller, Knut and Krause, Florian F. and Béché, Armand and Schowalter, Marco and Galioit, Vincent and Löffler, Stefan and Verbeeck, Johan and Zweck, Josef and Schattschneider, Peter and Rosenauer, Andreas}, year={2014}, month=dec }