Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Duan, Z., Smith, A., Yang, L., Youngblood, B., Lindner, J., Demidov, V. E., Demokritov, S. O., & Krivorotov, I. N. (2014). Nanowire spin torque oscillator driven by spin orbit torques. Nature Communications, 5(1).

Authors 8
  1. Zheng Duan (first)
  2. Andrew Smith (additional)
  3. Liu Yang (additional)
  4. Brian Youngblood (additional)
  5. Jürgen Lindner (additional)
  6. Vladislav E. Demidov (additional)
  7. Sergej O. Demokritov (additional)
  8. Ilya N. Krivorotov (additional)
References 51 Referenced 190
  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996). (10.1016/0304-8853(96)00062-5) / J. Magn. Magn. Mater. by JC Slonczewski (1996)
  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996). (10.1103/PhysRevB.54.9353) / Phys. Rev. B by L Berger (1996)
  3. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003). (10.1038/nature01967) / Nature by SI Kiselev (2003)
  4. Slavin, A. N. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009). (10.1109/TMAG.2008.2009935) / IEEE Trans. Magn. by AN Slavin (2009)
  5. Ozyilmaz, B., Kent, A. D., Sun, J. Z., Rooks, M. J. & Koch, R. H. Current-induced excitations in single cobalt ferromagnetic layer nanopillars. Phys. Rev. Lett. 93, 176604 (2004). (10.1103/PhysRevLett.93.176604) / Phys. Rev. Lett. by B Ozyilmaz (2004)
  6. Mistral, Q. et al. Current-driven microwave oscillations in current perpendicular-to-plane spin-valve nanopillars. Appl. Phys. Lett. 88, 192507 (2006). (10.1063/1.2201897) / Appl. Phys. Lett. by Q Mistral (2006)
  7. Braganca, P. M. et al. Nanoscale magnetic field detection using a spin torque oscillator. Nanotechnology 21, 235202 (2010). (10.1088/0957-4484/21/23/235202) / Nanotechnology by PM Braganca (2010)
  8. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in point Co90Fe10/Ni80Fe20 contacts. Phys. Rev. Lett. 92, 027201 (2004). (10.1103/PhysRevLett.92.027201) / Phys. Rev. Lett. by WH Rippard (2004)
  9. Ruotolo, A. et al. Coherent dynamics of a magnetic vortex-antivortex lattice. Nat. Nanotech. 4, 528–532 (2009). (10.1038/nnano.2009.143) / Nat. Nanotech. by A Ruotolo (2009)
  10. Mohseni, S. M. et al. Spin torque generated magnetic droplet solitons. Science 339, 1295–1298 (2013). (10.1126/science.1230155) / Science by SM Mohseni (2013)
  11. Nazarov, A. V. et al. Spin transfer stimulated microwave emission in MgO magnetic tunnel junctions. Appl. Phys. Lett. 88, 162504 (2006). (10.1063/1.2196232) / Appl. Phys. Lett. by AV Nazarov (2006)
  12. Deac, A. M. et al. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nat. Phys. 4, 803–809 (2008). (10.1038/nphys1036) / Nat. Phys. by AM Deac (2008)
  13. Houssameddine, D. et al. Spin transfer induced coherent microwave emission with large power from nanoscale MgO tunnel junctions. Appl. Phys. Lett. 93, 022505 (2008). (10.1063/1.2956418) / Appl. Phys. Lett. by D Houssameddine (2008)
  14. Georges, B. et al. Origin of the spectral linewidth in nonlinear spin-transfer oscillators based on MgO tunnel junctions. Phys. Rev. B 80, 060404 (2009). (10.1103/PhysRevB.80.060404) / Phys. Rev. B by B Georges (2009)
  15. Rowlands, G. E., Katine, J. A., Langer, J., Zhu, J. & Krivorotov, I. N. Time domain mapping of spin torque oscillator effective energy. Phys. Rev. Lett. 111, 087206 (2013). (10.1103/PhysRevLett.111.087206) / Phys. Rev. Lett. by GE Rowlands (2013)
  16. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012). (10.1038/nmat3459) / Nat. Mater. by VE Demidov (2012)
  17. Liu, L., Pai, C.-F., Ralph, D. C. & Buhrman, R. A. Magnetic oscillations driven by the spin Hall effect in 3-Terminal magnetic tunnel junction devices. Phys. Rev. Lett. 109, 186602 (2012). (10.1103/PhysRevLett.109.186602) / Phys. Rev. Lett. by L Liu (2012)
  18. Liu, R. H., Lim, W. L. & Urazhdin, S. Spectral characteristics of the microwave emission by the spin Hall nano-oscillator. Phys. Rev. Lett. 110, 147601 (2013). (10.1103/PhysRevLett.110.147601) / Phys. Rev. Lett. by RH Liu (2013)
  19. Haney, P. M., Lee, H.-W., Lee, K.-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013). (10.1103/PhysRevB.87.174411) / Phys. Rev. B by PM Haney (2013)
  20. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat. Mater. 12, 240–245 (2012). (10.1038/nmat3522) / Nat. Mater. by J Kim (2012)
  21. Martinez, E., Emori, S. & Beach, G. S. D. Current-driven domain wall motion along high perpendicular anisotropy multilayers: the role of the Rashba field, the spin Hall effect, and the Dzyaloshinskii-Moriya interaction. Appl. Phys. Lett. 103, 072406 (2013). (10.1063/1.4818723) / Appl. Phys. Lett. by E Martinez (2013)
  22. Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467 (1971). / JETP Lett. by MI Dyakonov (1971)
  23. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999). (10.1103/PhysRevLett.83.1834) / Phys. Rev. Lett. by JE Hirsch (1999)
  24. Zhang, S. Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000). (10.1103/PhysRevLett.85.393) / Phys. Rev. Lett. by S Zhang (2000)
  25. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008). (10.1103/PhysRevLett.101.036601) / Phys. Rev. Lett. by K Ando (2008)
  26. Fan, X. et al. Observation of the nonlocal spin-orbital effective field. Nat. Commun. 4, 1799 (2013). (10.1038/ncomms2709) / Nat. Commun. by X Fan (2013)
  27. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013). (10.1109/TMAG.2013.2262947) / IEEE Trans. Magn. by A Hoffmann (2013)
  28. Bai, L. et al. Universal method for separating spin pumping from spin rectification voltage of ferromagnetic resonance. Phys. Rev. Lett. 111, 217602 (2013). (10.1103/PhysRevLett.111.217602) / Phys. Rev. Lett. by L Bai (2013)
  29. Bychkov, Y. u. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984). / JETP Lett. by YuA Bychkov (1984)
  30. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004). (10.1103/PhysRevLett.92.126603) / Phys. Rev. Lett. by J Sinova (2004)
  31. Obata, K. & Tatara, G. Current-induced domain wall motion in Rashba spin-orbit system. Phys. Rev. B 77, 214429 (2008). (10.1103/PhysRevB.77.214429) / Phys. Rev. B by K Obata (2008)
  32. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010). (10.1038/nmat2613) / Nat. Mater. by IM Miron (2010)
  33. Demidov, V. E. et al. Control of magnetic fluctuations by spin current. Phys. Rev. Lett. 107, 107204 (2011). (10.1103/PhysRevLett.107.107204) / Phys. Rev. Lett. by VE Demidov (2011)
  34. Duan, Z. et al. Spin-wave modes in permalloy/platinum wires and tuning of the mode damping by spin Hall current. Phys. Rev. B 90, 024427 (2014). (10.1103/PhysRevB.90.024427) / Phys. Rev. B by Z Duan (2014)
  35. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005). (10.1038/nature04207) / Nature by AA Tulapurkar (2005)
  36. Sankey, J. C. et al. Spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Phys. Rev. Lett. 96, 227601 (2006). (10.1103/PhysRevLett.96.227601) / Phys. Rev. Lett. by JC Sankey (2006)
  37. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011). (10.1103/PhysRevLett.106.036601) / Phys. Rev. Lett. by L Liu (2011)
  38. Wang, C. et al. Bias and angular dependence of spin-transfer torque in magnetic tunnel junctions. Phys. Rev. B 79, 224416 (2009). (10.1103/PhysRevB.79.224416) / Phys. Rev. B by C Wang (2009)
  39. Mecking, N., Gui, Y. S. & Hu, C. M. Microwave photovoltage and photoresistance effects in ferromagnetic microstrips. Phys. Rev. B 76, 224430 (2007). (10.1103/PhysRevB.76.224430) / Phys. Rev. B by N Mecking (2007)
  40. Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005). (10.1103/PhysRevLett.95.237201) / Phys. Rev. Lett. by A Slavin (2005)
  41. Bayer, C. et al. Spin-wave excitations in finite rectangular elements. Top. Appl. Phys. 101, 57–103 (2006). (10.1007/10938171_2) / Top. Appl. Phys. by C Bayer (2006)
  42. Park, J. P., Eames, P., Engebretson, D. M., Berezovsky, J. & Crowell, P. A. Spatially resolved dynamics of localized spin-wave modes in ferromagnetic wires. Phys. Rev. Lett. 89, 277201 (2002). (10.1103/PhysRevLett.89.277201) / Phys. Rev. Lett. by JP Park (2002)
  43. McMichael, R. D. & Maranville, B. B. Edge saturation fields and dynamic edge modes in ideal and nonideal magnetic film edges. Phys. Rev. B 74, 024424 (2006). (10.1103/PhysRevB.74.024424) / Phys. Rev. B by RD McMichael (2006)
  44. Donahue, M. J. & Porter, D. G. OOMMF User's Guide, Version 1.0, Report No. NISTIR 6376 (National Institute of Standards and Technology, 1999). (10.6028/NIST.IR.6376)
  45. Krivorotov, I. N. et al. Temperature dependence of spin-transfer-induced switching of nanomagnets. Phys. Rev. Lett. 93, 166603 (2004). (10.1103/PhysRevLett.93.166603) / Phys. Rev. Lett. by IN Krivorotov (2004)
  46. Rantschler, J. O. et al. Surface anisotropy of permalloy in NM/NiFe/NM multilayers. J. Appl. Phys. 97, 10J113 (2005). (10.1063/1.1853711) / J. Appl. Phys. by JO Rantschler (2005)
  47. Nembach, H. T., Shaw, J. M., Boone, C. T. & Silva, T. J. Mode- and size-dependent Landau-Lifshitz damping in magnetic nanostructures: evidence for nonlocal damping. Phys. Rev. Lett. 110, 117201 (2013). (10.1103/PhysRevLett.110.117201) / Phys. Rev. Lett. by HT Nembach (2013)
  48. Muduli, P. K., Heinonen, O. G. & Akerman, J. Temperature dependence of linewidth in nanocontact based spin torque oscillators: effect of multiple oscillatory modes. Phys. Rev. B 86, 174408 (2012). (10.1103/PhysRevB.86.174408) / Phys. Rev. B by PK Muduli (2012)
  49. Demokritov, S. O. & Demidov, V. E. Micro-Brillouin light scattering spectroscopy of magnetic nanostructures. IEEE Trans. Magn. 44, 6–12 (2008). (10.1109/TMAG.2007.910227) / IEEE Trans. Magn. by SO Demokritov (2008)
  50. Ulrichs, H., Demidov, V. E., Demokritov, S. O. & Urazhdin, S. Parametric excitation of eigenmodes in microscopic magnetic dots. Phys. Rev. B 84, 094401 (2011). (10.1103/PhysRevB.84.094401) / Phys. Rev. B by H Ulrichs (2011)
  51. De Wames, R. E. & Wolfram, T. Dipole-exchange spin waves in ferromagnetic films. J. Appl. Phys. 41, 987–993 (1970). (10.1063/1.1659049) / J. Appl. Phys. by RE De Wames (1970)
Dates
Type When
Created 10 years, 8 months ago (Dec. 5, 2014, 5:35 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 9:36 p.m.)
Indexed 1 week, 3 days ago (Aug. 22, 2025, 12:53 a.m.)
Issued 10 years, 8 months ago (Dec. 5, 2014)
Published 10 years, 8 months ago (Dec. 5, 2014)
Published Online 10 years, 8 months ago (Dec. 5, 2014)
Funders 0

None

@article{Duan_2014, title={Nanowire spin torque oscillator driven by spin orbit torques}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6616}, DOI={10.1038/ncomms6616}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Duan, Zheng and Smith, Andrew and Yang, Liu and Youngblood, Brian and Lindner, Jürgen and Demidov, Vladislav E. and Demokritov, Sergej O. and Krivorotov, Ilya N.}, year={2014}, month=dec }