Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Gibertini, M., Pizzi, G., & Marzari, N. (2014). Engineering polar discontinuities in honeycomb lattices. Nature Communications, 5(1).

Authors 3
  1. Marco Gibertini (first)
  2. Giovanni Pizzi (additional)
  3. Nicola Marzari (additional)
References 61 Referenced 46
  1. Mannhart, J. & Schlom, D. G. Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010). (10.1126/science.1181862) / Science by J Mannhart (2010)
  2. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012). (10.1038/nmat3223) / Nat. Mater. by HY Hwang (2012)
  3. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004). (10.1038/nature02308) / Nature by A Ohtomo (2004)
  4. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007). (10.1126/science.1146006) / Science by N Reyren (2007)
  5. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493–496 (2007). (10.1038/nmat1931) / Nat. Mater. by A Brinkman (2007)
  6. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 7, 762–766 (2011). (10.1038/nphys2080) / Nat. Phys. by L Li (2011)
  7. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 7, 767–771 (2011). (10.1038/nphys2079) / Nat. Phys. by JA Bert (2011)
  8. Bristowe, N. C., Ghosez, P., Littlewood, P. B. & Artacho, E. The origin of two-dimensional electron gases at oxide interfaces: insights from theory. J. Phys. Condens. Matter 26, 143201 (2014). (10.1088/0953-8984/26/14/143201) / J. Phys. Condens. Matter by NC Bristowe (2014)
  9. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994). (10.1103/RevModPhys.66.899) / Rev. Mod. Phys. by R Resta (1994)
  10. Janotti, A., Bjaalie, L., Gordon, L. & Van de Walle, C. G. Controlling the density of the two-dimensional electron gas at the SrTiO3/LaAlO3 interface. Phys. Rev. B 86, 241108 (2012). (10.1103/PhysRevB.86.241108) / Phys. Rev. B by A Janotti (2012)
  11. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006). (10.1126/science.1131091) / Science by S Thiel (2006)
  12. Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012). (10.1103/PhysRevB.86.115112) / Phys. Rev. B by C Fang (2012)
  13. Jadaun, P., Xiao, D., Niu, Q. & Banerjee, S. K. Topological classification of crystalline insulators with space group symmetry. Phys. Rev. B 88, 085110 (2013). (10.1103/PhysRevB.88.085110) / Phys. Rev. B by P Jadaun (2013)
  14. Bristowe, N. C., Stengel, M., Littlewood, P. B., Artacho, E. & Pruneda, J. M. One-dimensional half-metallic interfaces of two-dimensional honeycomb insulators. Phys. Rev. B 88, 161411 (2013). (10.1103/PhysRevB.88.161411) / Phys. Rev. B by NC Bristowe (2013)
  15. Vanderbilt, D. & King-Smith, R. D. Electric polarization as a bulk quantity and its relation to surface charge. Phys. Rev. B 48, 4442–4455 (1993). (10.1103/PhysRevB.48.4442) / Phys. Rev. B by D Vanderbilt (1993)
  16. Tusche, C., Meyerheim, H. L. & Kirschner, J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007). (10.1103/PhysRevLett.99.026102) / Phys. Rev. Lett. by C Tusche (2007)
  17. Lin, S. S. Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951–3955 (2012). (10.1021/jp210536m) / J. Phys. Chem. C by SS Lin (2012)
  18. Sutter, P., Cortes, R., Lahiri, J. & Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 12, 4869–4874 (2012). (10.1021/nl302398m) / Nano Lett. by P Sutter (2012)
  19. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012). (10.1038/nature11408) / Nature by MP Levendorf (2012)
  20. Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8, 119–124 (2013). (10.1038/nnano.2012.256) / Nat. Nanotechnol. by Z Liu (2013)
  21. Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343, 163–167 (2014). (10.1126/science.1246137) / Science by L Liu (2014)
  22. Gong, Y. et al. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 5, 3193 (2014). (10.1038/ncomms4193) / Nat. Commun. by Y Gong (2014)
  23. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012). (10.1103/RevModPhys.84.1419) / Rev. Mod. Phys. by N Marzari (2012)
  24. Stengel, M. Electrostatic stability of insulating surfaces: theory and applications. Phys. Rev. B 84, 205432 (2011). (10.1103/PhysRevB.84.205432) / Phys. Rev. B by M Stengel (2011)
  25. Barone, V. & Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 8, 2210–2214 (2008). (10.1021/nl080745j) / Nano Lett. by V Barone (2008)
  26. Botello-Méndez, A. R., López-Urías, F., Terrones, M. & Terrones, H. Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Lett. 8, 1562–1565 (2008). (10.1021/nl072511q) / Nano Lett. by AR Botello-Méndez (2008)
  27. Lou, P. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons. Phys. Chem. Chem. Phys. 13, 17194–17204 (2011). (10.1039/c1cp21287g) / Phys. Chem. Chem. Phys. by P Lou (2011)
  28. Qi, J. et al. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12, 1224–1228 (2012). (10.1021/nl2035749) / Nano Lett. by J Qi (2012)
  29. Treier, M. et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3, 61–67 (2011). (10.1038/nchem.891) / Nat. Chem. by M Treier (2011)
  30. Kim, K. et al. Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723 (2013). (10.1038/ncomms3723) / Nat. Commun. by K Kim (2013)
  31. Zhang, X. et al. Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano 7, 198–202 (2013). (10.1021/nn303730v) / ACS Nano by X Zhang (2013)
  32. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). (10.1038/nnano.2012.193) / Nat. Nanotechnol. by QH Wang (2012)
  33. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). (10.1038/nchem.1589) / Nat. Chem. by M Chhowalla (2013)
  34. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013). (10.1021/nl4007479) / Nano Lett. by W Zhou (2013)
  35. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013). (10.1038/nmat3633) / Nat. Mater. by AM van der Zande (2013)
  36. Liu, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett. 113, 066105 (2014). (10.1103/PhysRevLett.113.066105) / Phys. Rev. Lett. by H Liu (2014)
  37. Helveg, S. et al. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951–954 (2000). (10.1103/PhysRevLett.84.951) / Phys. Rev. Lett. by S Helveg (2000)
  38. Singh, A. K. & Yakobson, B. I. Electronics and magnetism of patterned graphene nanoroads. Nano Lett. 9, 1540–1543 (2009). (10.1021/nl803622c) / Nano Lett. by AK Singh (2009)
  39. Karlický, F., Datta, K. K. R., Otyepka, M. & Zbořil, R. Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7, 6434–6464 (2013). (10.1021/nn4024027) / ACS Nano by F Karlický (2013)
  40. Johns, J. E. & Hersam, M. C. Atomic covalent functionalization of graphene. Acc. Chem. Res. 46, 77–86 (2013). (10.1021/ar300143e) / Acc. Chem. Res. by JE Johns (2013)
  41. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009). (10.1126/science.1167130) / Science by DC Elias (2009)
  42. Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of teflon. Small 6, 2877–2884 (2010). (10.1002/smll.201001555) / Small by RR Nair (2010)
  43. Robinson, J. T. et al. Properties of fluorinated graphene films. Nano Lett. 10, 3001–3005 (2010). (10.1021/nl101437p) / Nano Lett. by JT Robinson (2010)
  44. Lee, W.-K. et al. Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. Nano Lett. 11, 5461–5464 (2011). (10.1021/nl203225w) / Nano Lett. by W-K Lee (2011)
  45. Tang, C. et al. Fluorination and electrical conductivity of BN nanotubes. J. Am. Chem. Soc. 127, 6552–6553 (2005). (10.1021/ja042388u) / J. Am. Chem. Soc. by C Tang (2005)
  46. Xue, Y. et al. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Res. Lett. 8, 49 (2013). (10.1186/1556-276X-8-49) / Nanoscale Res. Lett. by Y Xue (2013)
  47. Pruneda, J. M. Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys. Rev. B 81, 161409 (2010). (10.1103/PhysRevB.81.161409) / Phys. Rev. B by JM Pruneda (2010)
  48. Nakhmanson, S. M., Calzolari, A., Meunier, V., Bernholc, J. & Buongiorno Nardelli, M. Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys. Rev. B 67, 235406 (2003). (10.1103/PhysRevB.67.235406) / Phys. Rev. B by SM Nakhmanson (2003)
  49. Sapmaz, S., Jarillo-Herrero, P., Kouwenhoven, L. P. & van der Zant, H. S. J. Quantum dots in carbon nanotubes. Semicond. Sci. Technol. 21, S52–S63 (2006). (10.1088/0268-1242/21/11/S08) / Semicond. Sci. Technol. by S Sapmaz (2006)
  50. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). (10.1103/PhysRevA.57.120) / Phys. Rev. A by D Loss (1998)
  51. Akhmerov, A. R. & Beenakker, C. W. J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008). (10.1103/PhysRevB.77.085423) / Phys. Rev. B by AR Akhmerov (2008)
  52. Baldereschi, A., Baroni, S. & Resta, R. Band offsets in lattice-matched heterojunctions: a model and first-principles calculations for GaAs/AlAs. Phys. Rev. Lett. 61, 734–737 (1988). (10.1103/PhysRevLett.61.734) / Phys. Rev. Lett. by A Baldereschi (1988)
  53. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9, 257–261 (2014). (10.1038/nnano.2014.14) / Nat. Nanotechnol. by A Pospischil (2014)
  54. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014). (10.1038/nnano.2014.25) / Nat. Nanotechnol. by BWH Baugher (2014)
  55. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014). (10.1038/nnano.2014.26) / Nat. Nanotechnol. by JS Ross (2014)
  56. Jo, S., Ubrig, N., Berger, H., Kuzmenko, A. B. & Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14, 2019–2025 (2014). (10.1021/nl500171v) / Nano Lett. by S Jo (2014)
  57. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). (10.1088/0953-8984/21/39/395502) / J. Phys. Condens. Matter by P Giannozzi (2009)
  58. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  59. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). (10.1103/PhysRevB.41.7892) / Phys. Rev. B by D Vanderbilt (1990)
  60. Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999). (10.1103/PhysRevLett.82.3296) / Phys. Rev. Lett. by N Marzari (1999)
  61. Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008). (10.1016/j.cpc.2007.11.016) / Comput. Phys. Commun. by AA Mostofi (2008)
Dates
Type When
Created 10 years, 10 months ago (Oct. 10, 2014, 7:27 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 9:52 p.m.)
Indexed 3 months, 3 weeks ago (May 6, 2025, 4:49 a.m.)
Issued 10 years, 10 months ago (Oct. 10, 2014)
Published 10 years, 10 months ago (Oct. 10, 2014)
Published Online 10 years, 10 months ago (Oct. 10, 2014)
Funders 0

None

@article{Gibertini_2014, title={Engineering polar discontinuities in honeycomb lattices}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6157}, DOI={10.1038/ncomms6157}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Gibertini, Marco and Pizzi, Giovanni and Marzari, Nicola}, year={2014}, month=oct }