Bibliography
Saba, M., Cadelano, M., Marongiu, D., Chen, F., Sarritzu, V., Sestu, N., Figus, C., Aresti, M., Piras, R., Geddo Lehmann, A., Cannas, C., Musinu, A., Quochi, F., Mura, A., & Bongiovanni, G. (2014). Correlated electronâhole plasma in organometal perovskites. Nature Communications, 5(1).
Authors
15
- Michele Saba (first)
- Michele Cadelano (additional)
- Daniela Marongiu (additional)
- Feipeng Chen (additional)
- Valerio Sarritzu (additional)
- Nicola Sestu (additional)
- Cristiana Figus (additional)
- Mauro Aresti (additional)
- Roberto Piras (additional)
- Alessandra Geddo Lehmann (additional)
- Carla Cannas (additional)
- Anna Musinu (additional)
- Francesco Quochi (additional)
- Andrea Mura (additional)
- Giovanni Bongiovanni (additional)
References
57
Referenced
534
-
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
(
10.1021/ja809598r
) / J. Am. Chem. Soc. by A Kojima (2009) -
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).
(
10.1039/c1nr10867k
) / Nanoscale by J-H Im (2011) -
Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
(
10.1038/srep00591
) / Sci. Rep. by H-S Kim (2012) -
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
(
10.1126/science.1228604
) / Science by MM Lee (2012) -
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
(
10.1038/nature12340
) / Nature by J Burschka (2013) -
Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
(
10.1126/science.1243982
) / Science by SD Stranks (2013) -
Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).
(
10.1126/science.1243167
) / Science by G Xing (2013) -
Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).
(
10.1021/jz4020162
) / J. Phys. Chem. Lett. by HJ Snaith (2013) -
Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nat. Photon. 8, 128–132 (2013).
(
10.1038/nphoton.2013.341
) / Nat. Photon. by O Malinkiewicz (2013) -
Park, N. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).
(
10.1021/jz400892a
) / J. Phys. Chem. Lett. by N Park (2013) -
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. l. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).
(
10.1021/nl400349b
) / Nano Lett. by JH Noh (2013) -
Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013).
(
10.1038/ncomms3761
) / Nat. Commun. by P Docampo (2013) -
Gao, P., Grätzel, M. & Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014).
(
10.1039/C4EE00942H
) / Energy Environ. Sci. by P Gao (2014) -
Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 10.1039/c4ee01076k (2014).
(
10.1039/C4EE01076K
) -
Ogomi, Y. et al. CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060, nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).
(
10.1021/jz5002117
) / J. Phys. Chem. Lett. by Y Ogomi (2014) -
Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).
(
10.1039/c3ee43822h
) / Energy Environ. Sci. by GE Eperon (2014) -
Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).
(
10.1038/nmat3911
) / Nat. Mater. by G Xing (2014) -
Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).
(
10.1021/jz5005285
) / J. Phys. Chem. Lett. by F Deschler (2014) -
Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).
(
10.1002/adma.201305172
) / Adv. Mater. by C Wehrenfennig (2014) -
Marchioro, A. et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photon. 8, 250–255 (2014).
(
10.1038/nphoton.2013.374
) / Nat. Photon. by A Marchioro (2014) -
D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).
(
10.1038/ncomms4586
) / Nat. Commun. by V D’Innocenzo (2014) -
Roiati, V. et al. Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. Energy Environ. Sci. 7, 1889–1894 (2014).
(
10.1039/C3EE43991G
) / Energy Environ. Sci. by V Roiati (2014) -
Kim, J., Lee, S.-H., Lee, J. H. & Hong, K. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).
(
10.1021/jz500370k
) / J. Phys. Chem. Lett. by J Kim (2014) -
De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).
(
10.1021/jz500279b
) / J. Phys. Chem. Lett. by S De Wolf (2014) -
Zhao, Y., Nardes, A. M. & Zhu, K. Solid-state mesostructured perovskite CH3NH3PbI3 solar cells: charge transport, recombination, and diffusion length. J. Phys. Chem. Lett. 5, 490–494 (2014).
(
10.1021/jz500003v
) / J. Phys. Chem. Lett. by Y Zhao (2014) -
Giorgi, G., Fujisawa, J., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).
(
10.1021/jz4023865
) / J. Phys. Chem. Lett. by G Giorgi (2013) -
Filippetti, A. & Mattoni, A. Hybrid perovskites for photovoltaics: Insights from first principles. Phys. Rev. B 89, 125203 (2014).
(
10.1103/PhysRevB.89.125203
) / Phys. Rev. B by A Filippetti (2014) -
Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M. & De Angelis, F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013).
(
10.1021/jp4048659
) / J. Phys. Chem. C by E Mosconi (2013) -
Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 . Physics B 201, 427–430 (1994).
(
10.1016/0921-4526(94)91130-4
) / Physics B by M Hirasawa (1994) -
Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003).
(
10.1016/S0038-1098(03)00566-0
) / Solid State Commun. by K Tanaka (2003) -
Sun, S. et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399 (2014).
(
10.1039/C3EE43161D
) / Energy Environ. Sci. by S Sun (2014) -
Quochi, F. et al. Extending the lasing wavelength coverage of organic semiconductor nanofibers by periodic organic-organic heteroepitaxy. Adv. Opt. Mater. 1, 117–122 (2013).
(
10.1002/adom.201200005
) / Adv. Opt. Mater. by F Quochi (2013) -
Clark, J. & Lanzani, G. Organic photonics for communications. Nat. Photon. 4, 438–446 (2010).
(
10.1038/nphoton.2010.160
) / Nat. Photon. by J Clark (2010) -
Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Vol. 115, Springer Ser. Solid-State Sci. (1999).
(
10.1007/978-3-662-03770-6
) -
Butty, J. Optical amplification and its saturation in semiconductor quantum wells. Opt. Eng. 34, 1941–1950 (1995).
(
10.1117/12.200612
) / Opt. Eng. by J Butty (1995) -
Elliott, R. Intensity of optical absorption by excitons. Phys. Rev. 108, 1384–1389 (1957).
(
10.1103/PhysRev.108.1384
) / Phys. Rev. by R Elliott (1957) -
Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).
(
10.1021/ic401215x
) / Inorg. Chem. by CC Stoumpos (2013) -
Sturge, M. D. Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962).
(
10.1103/PhysRev.127.768
) / Phys. Rev. by MD Sturge (1962) -
Sell, D. & Lawaetz, P. New analysis of direct exciton transitions: application to GaP. Phys. Rev. Lett. 26, 311–314 (1971).
(
10.1103/PhysRevLett.26.311
) / Phys. Rev. Lett. by D Sell (1971) -
Lanzani, G. The Photophysics behind Photovoltaics and Photonics WILEY-VCH Verlag GmbH&Co. KGaA (2012).
(
10.1002/9783527645138
) -
Bongiovanni, G. & Staehli, J. Density dependence of the electron-hole plasma lifetime in semiconductor quantum wells. Phys. Rev. B 46, 9861–9864 (1992).
(
10.1103/PhysRevB.46.9861
) / Phys. Rev. B by G Bongiovanni (1992) -
Kubo, R. Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn 12, 570–586 (1957).
(
10.1143/JPSJ.12.570
) / J. Phys. Soc. Jpn by R Kubo (1957) -
Schwinger, J. Theory of many-particle systems. Phys. Rev. 115, 1342–1373 (1959).
(
10.1103/PhysRev.115.721
) / Phys. Rev. by J Schwinger (1959) -
Haug, H. & Schmitt-Rink, S. Electronic theory of the optical properties of laser-excited semiconductors. Prog. Quant. Electron. 9, 3–100 (1984).
(
10.1016/0079-6727(84)90026-0
) / Prog. Quant. Electron. by H Haug (1984) -
Bongiovanni, G., Botta, C., Silvestro, G. D. i. & Loi, M. A. Energy transfer in nanostructured oligothiophene inclusion compounds. Chem. Phys. Lett. 345, 386–394 (2001).
(
10.1016/S0009-2614(01)00898-3
) / Chem. Phys. Lett. by G Bongiovanni (2001) -
Loi, M. et al. Ultrafast formation of nonemissive species via intermolecular interaction in single crystals of conjugated molecules. Phys. Rev. Lett. 86, 732–735 (2001).
(
10.1103/PhysRevLett.86.732
) / Phys. Rev. Lett. by M Loi (2001) -
Poulsen, L. et al. Three-dimensional energy transport in highly luminescent host-guest crystals: a quantitative experimental and theoretical study. J. Am. Chem. Soc. 129, 8585–8593 (2007).
(
10.1021/ja0714437
) / J. Am. Chem. Soc. by L Poulsen (2007) -
Grieshaber, W. et al. Competition between band gap and yellow luminescence in GaN and its relevance for optoelectronic devices. J. Appl. Phys. 80, 4615–4620 (1996).
(
10.1063/1.363443
) / J. Appl. Phys. by W Grieshaber (1996) -
Saha, M. N. On a physical theory of stellar spectra. Proc. R. Soc. Lond. A 99, 135–153 (1921).
(
10.1098/rspa.1921.0029
) / Proc. R. Soc. Lond. A by MN Saha (1921) -
Phillips, R. T., Nixon, G. C. & Road, M. Excitonic trions in undoped GaAs quantum wells. Solid State Commun. 98, 287–291 (1996).
(
10.1016/0038-1098(96)00069-5
) / Solid State Commun. by RT Phillips (1996) -
Kappei, L., Szczytko, J., Morier-Genoud, F. & Deveaud, B. Direct observation of the Mott transition in an optically excited semiconductor quantum well. Phys. Rev. Lett. 94, 147403 (2005).
(
10.1103/PhysRevLett.94.147403
) / Phys. Rev. Lett. by L Kappei (2005) -
Hoyer, W. et al. Many-body dynamics and exciton formation studied by time-resolved photoluminescence. Phys. Rev. B 72, 075324 (2005).
(
10.1103/PhysRevB.72.075324
) / Phys. Rev. B by W Hoyer (2005) -
Szczytko, J. et al. Determination of the exciton formation in quantum wells from time-resolved interband luminescence. Phys. Rev. Lett. 93, 137401 (2004).
(
10.1103/PhysRevLett.93.137401
) / Phys. Rev. Lett. by J Szczytko (2004) -
Koch, S. W., Kira, M., Khitrova, G. & Gibbs, H. M. Semiconductor excitons in new light. Nat. Mater. 5, 523–531 (2006).
(
10.1038/nmat1658
) / Nat. Mater. by SW Koch (2006) -
Chatterjee, S. et al. Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons. Phys. Rev. Lett. 92, 067402 (2004).
(
10.1103/PhysRevLett.92.067402
) / Phys. Rev. Lett. by S Chatterjee (2004) -
Saba, M. et al. Light-induced charged and trap states in colloidal nanocrystals detected by variable pulse rate photoluminescence spectroscopy. ACS Nano 7, 229–238 (2013).
(
10.1021/nn305031k
) / ACS Nano by M Saba (2013) -
Aresti, M. et al. Colloidal Bi2S3 nanocrystals: quantum size effects and midgap states. Adv. Funct. Mater. 24, 3341–3350 (2014).
(
10.1002/adfm.201303879
) / Adv. Funct. Mater. by M Aresti (2014)
Dates
Type | When |
---|---|
Created | 10 years, 11 months ago (Sept. 30, 2014, 7:41 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 10:02 p.m.) |
Indexed | 3 days, 3 hours ago (Aug. 31, 2025, 6:20 a.m.) |
Issued | 10 years, 11 months ago (Sept. 30, 2014) |
Published | 10 years, 11 months ago (Sept. 30, 2014) |
Published Online | 10 years, 11 months ago (Sept. 30, 2014) |
@article{Saba_2014, title={Correlated electron–hole plasma in organometal perovskites}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms6049}, DOI={10.1038/ncomms6049}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Saba, Michele and Cadelano, Michele and Marongiu, Daniela and Chen, Feipeng and Sarritzu, Valerio and Sestu, Nicola and Figus, Cristiana and Aresti, Mauro and Piras, Roberto and Geddo Lehmann, Alessandra and Cannas, Carla and Musinu, Anna and Quochi, Francesco and Mura, Andrea and Bongiovanni, Giovanni}, year={2014}, month=sep }