Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Fogler, M. M., Butov, L. V., & Novoselov, K. S. (2014). High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nature Communications, 5(1).

Authors 3
  1. M. M. Fogler (first)
  2. L. V. Butov (additional)
  3. K. S. Novoselov (additional)
References 43 Referenced 461
  1. Keldysh, L. V. & Kozlov, A. N. Collective properties of excitons in semiconductors. J. Exp. Theor. Phys. 27, 521 (1968). / J. Exp. Theor. Phys. by LV Keldysh (1968)
  2. Lozovik, Y. E. & Yudson, V. I. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. J. Exp. Theor. Phys. 44, 389 (1976). / J. Exp. Theor. Phys. by YE Lozovik (1976)
  3. Fukuzawa, T., Kano, S., Gustafson, T. & Ogawa, T. Possibility of coherent light emission from Bose condensed states of SEHPs. Surf. Sci. 228, 482–485 (1990). (10.1016/0039-6028(90)90358-F) / Surf. Sci. by T Fukuzawa (1990)
  4. High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008). (10.1126/science.1157845) / Science by AA High (2008)
  5. High, A. A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012). (10.1038/nature10903) / Nature by AA High (2012)
  6. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). (10.1038/nature12385) / Nature by AK Geim (2013)
  7. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). (10.1103/PhysRevLett.108.196802) / Phys. Rev. Lett. by D Xiao (2012)
  8. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013). (10.1103/PhysRevB.88.045318) / Phys. Rev. B by TC Berkelbach (2013)
  9. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nat. Nanotechnol. 9, 111–115 (2013). (10.1038/nnano.2013.277) / Nat. Nanotechnol. by Y Zhang (2013)
  10. De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002). (10.1103/PhysRevLett.88.206401) / Phys. Rev. Lett. by S De Palo (2002)
  11. Schleede, J., Filinov, A., Bonitz, M. & Fehske, H. Phase diagram of bilayer electron-hole plasmas. Contrib. Plasma Phys. 52, 819–826 (2012). (10.1002/ctpp.201200045) / Contrib. Plasma Phys. by J Schleede (2012)
  12. Maezono, R., López Ros, P., Ogawa, T. & Needs, R. J. Excitons and biexcitons in symmetric electron-hole bilayers. Phys. Rev. Lett. 110, 216407 (2013). (10.1103/PhysRevLett.110.216407) / Phys. Rev. Lett. by R Maezono (2013)
  13. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  14. Chernikov, A. et al. Non-hydrogenic exciton Rydberg series in monolayer WS2 . Preprint at http://arxiv.org/abs/1403.4270 (2014).
  15. Britnell, L. et al. Field-Effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). (10.1126/science.1218461) / Science by L Britnell (2012)
  16. Nikolaev, V. V. & Portnoi, M. E. Mott transition of spatially indirect excitons. Proc. SPIE 5509, 187–193 (2004). (10.1117/12.557660) / Proc. SPIE by VV Nikolaev (2004)
  17. Butov, L. V., Kulakovskii, V. D., Lach, E., Forchel, A. & Grützmacher, D. Magnetoluminescence study of many-body effects in homogeneous quasi-two-dimensional electron-hole plasma in undoped InxGa1–xAs/InP single quantum wells. Phys. Rev. B 44, 10680–10688 (1991). (10.1103/PhysRevB.44.10680) / Phys. Rev. B by LV Butov (1991)
  18. Kappei, L., Szczytko, J., Morier-Genoud, F. & Deveaud, B. Direct observation of the Mott transition in an optically excited semiconductor quantum well. Phys. Rev. Lett. 94, 147403 (2005). (10.1103/PhysRevLett.94.147403) / Phys. Rev. Lett. by L Kappei (2005)
  19. Filinov, A., Prokof'ev, N. V. & Bonitz, M. Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipole systems. Phys. Rev. Lett. 105, 070401 (2010). (10.1103/PhysRevLett.105.070401) / Phys. Rev. Lett. by A Filinov (2010)
  20. Su, J.-J. & MacDonald, A. H. How to make a bilayer exciton condensate flow. Nat. Phys. 4, 799–802 (2008). (10.1038/nphys1055) / Nat. Phys. by J-J Su (2008)
  21. Littlewood, P. B. et al. Models of coherent exciton condensation. J. Phys.: Condens. Matter 16, S3597–S3620 (2004). / J. Phys.: Condens. Matter by PB Littlewood (2004)
  22. Eisenstein, J. P. & MacDonald, A. H. Bose-Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004). (10.1038/nature03081) / Nature by JP Eisenstein (2004)
  23. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013). (10.1088/0034-4885/76/5/056503) / Rep. Prog. Phys. by E McCann (2013)
  24. Min, H., Bistritzer, R., Su, J.-J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008). (10.1103/PhysRevB.78.121401) / Phys. Rev. B by H Min (2008)
  25. Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013). (10.1103/PhysRevLett.110.146803) / Phys. Rev. Lett. by A Perali (2013)
  26. Neilson, D., Perali, A. & Hamilton, A. R. Excitonic superfluidity and screening in electron-hole bilayer systems. Phys. Rev. B 89, 060502(R) (2014). (10.1103/PhysRevB.89.060502) / Phys. Rev. B by D Neilson (2014)
  27. Kharitonov, M. Y. & Efetov, K. B. Electron screening and excitonic condensation in double-layer graphene systems. Phys. Rev. B 78, 241401 (2008). (10.1103/PhysRevB.78.241401) / Phys. Rev. B by MY Kharitonov (2008)
  28. Komsa, H.-P. & Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88, 085318 (2013). (10.1103/PhysRevB.88.085318) / Phys. Rev. B by H-P Komsa (2013)
  29. Grosso, G. et al. Excitonic switches operating at around 100 K. Nat. Photonics 3, 577–580 (2009). (10.1038/nphoton.2009.166) / Nat. Photonics by G Grosso (2009)
  30. Kormányos, A., Zólyomi, V., Drummond, N. D. & Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014). / Phys. Rev. X by A Kormányos (2014)
  31. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013). (10.1038/ncomms2498) / Nat. Commun. by JS Ross (2013)
  32. Ben-Tabou de Leon, S. & Laikhtman, B. Mott transition, biexciton crossover, and spin ordering in the exciton gas in quantum wells. Phys. Rev. B 67, 235315 (2003). (10.1103/PhysRevB.67.235315) / Phys. Rev. B by S Ben-Tabou de Leon (2003)
  33. Cai, Y., Zhang, L., Zeng, Q., Cheng, L. & Xu, Y. Infrared reflectance spectrum of BN calculated from first principles. Solid State Commun. 141, 262–266 (2007). (10.1016/j.ssc.2006.10.040) / Solid State Commun. by Y Cai (2007)
  34. Szymanska, M. H. & Littlewood, P. B. Excitonic binding in coupled quantum wells. Phys. Rev. B 67, 193305 (2003). (10.1103/PhysRevB.67.193305) / Phys. Rev. B by MH Szymanska (2003)
  35. Astrakharchik, G. E., Boronat, J., Kurbakov, I. L. & Lozovik, Y. E. Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett. 98, 060405 (2007). (10.1103/PhysRevLett.98.060405) / Phys. Rev. Lett. by GE Astrakharchik (2007)
  36. Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007). (10.1103/PhysRevLett.98.060404) / Phys. Rev. Lett. by HP Büchler (2007)
  37. Keldysh, L. V. & Kopaev, Y. V. Possible instability of the semimetallic state toward Coulomb interaction. Sov. Phys. Solid State 6, 2219 (1965). / Sov. Phys. Solid State by LV Keldysh (1965)
  38. Zhu, X., Littlewood, P. B., Hybertsen, M. S. & Rice, T. M. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett. 74, 1633–1636 (1995). (10.1103/PhysRevLett.74.1633) / Phys. Rev. Lett. by X Zhu (1995)
  39. Lozovik, Y. E. & Berman, O. L. Phase transitions in a system of two coupled quantum wells. JETP Lett. 64, 573–579 (1996). (10.1134/1.567264) / JETP Lett. by YE Lozovik (1996)
  40. Meyertholen, A. D. & Fogler, M. M. Biexcitons in two-dimensional systems with spatially separated electrons and holes. Phys. Rev. B 78, 235307 (2008). (10.1103/PhysRevB.78.235307) / Phys. Rev. B by AD Meyertholen (2008)
  41. Tan, M. Y. J., Drummond, N. D. & Needs, R. J. Exciton and biexciton energies in bilayer systems. Phys. Rev. B 71, 033303 (2005). (10.1103/PhysRevB.71.033303) / Phys. Rev. B by MYJ Tan (2005)
  42. Schindler, C. & Zimmermann, R. Analysis of the exciton-exciton interaction in semiconductor quantum wells. Phys. Rev. B 78, 045313 (2008). (10.1103/PhysRevB.78.045313) / Phys. Rev. B by C Schindler (2008)
  43. Spivak, B. & Kivelson, S. A. Phases intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 70, 155114 (2004). (10.1103/PhysRevB.70.155114) / Phys. Rev. B by B Spivak (2004)
Dates
Type When
Created 11 years ago (July 28, 2014, 7:43 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:20 p.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 8:31 a.m.)
Issued 11 years ago (July 28, 2014)
Published 11 years ago (July 28, 2014)
Published Online 11 years ago (July 28, 2014)
Funders 0

None

@article{Fogler_2014, title={High-temperature superfluidity with indirect excitons in van der Waals heterostructures}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms5555}, DOI={10.1038/ncomms5555}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Fogler, M. M. and Butov, L. V. and Novoselov, K. S.}, year={2014}, month=jul }