Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Xia, F., Wang, H., & Jia, Y. (2014). Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5(1).

Authors 3
  1. Fengnian Xia (first)
  2. Han Wang (additional)
  3. Yichen Jia (additional)
References 53 Referenced 3,107
  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (10.1038/nature04233) / Nature by KS Novoselov (2005)
  3. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). (10.1038/nature04235) / Nature by Y Zhang (2005)
  4. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). (10.1126/science.1156965) / Science by RR Nair (2008)
  5. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008). (10.1103/PhysRevLett.101.196405) / Phys. Rev. Lett. by KF Mak (2008)
  6. Lin, Y. M. et al. 100-GHz transistors from wafer-Scale epitaxial graphene. Science 327, 662 (2010). (10.1126/science.1184289) / Science by YM Lin (2010)
  7. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). (10.1126/science.1157996) / Science by C Lee (2008)
  8. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010). (10.1038/nphoton.2010.186) / Nat. Photon. by F Bonaccorso (2010)
  9. Jia, X. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701–1705 (2009). (10.1126/science.1166862) / Science by X Jia (2009)
  10. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). (10.1038/nnano.2010.89) / Nat. Nanotechnol. by F Schwierz (2010)
  11. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nantechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nantechnol. by CR Dean (2010)
  12. Alem, S. et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009). (10.1103/PhysRevB.80.155425) / Phys. Rev. B by S Alem (2009)
  13. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011). (10.1038/nmat2968) / Nat. Mater. by J Xue (2011)
  14. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  15. Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat. Nanotechnol. by B Radisavljevic (2011)
  16. Mak, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  17. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett. by A Splendiani (2010)
  18. Jones, A. M. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2 . Nat. Phys. 10, 130–134 (2014). (10.1038/nphys2848) / Nat. Phys. by AM Jones (2014)
  19. Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). (10.1126/science.1235547) / Science by L Britnell (2013)
  20. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). (10.1038/nchem.1589) / Nat. Chem. by M Chhowalla (2013)
  21. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012). (10.1021/nl301702r) / Nano Lett. by H Fang (2012)
  22. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012). (10.1021/nl302015v) / Nano Lett. by H Wang (2012)
  23. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146–147 (2013). (10.1038/nnano.2013.30) / Nat. Nanotechnol. by MS Fuhrer (2013)
  24. Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Preprint at http://arxiv.org/abs/1404.4035 (2014). (10.1103/PhysRevLett.113.106802)
  25. Abudukelimu, A. et al. The effect of isotropic and anisotropic scattering in drain region of ballistic channel diode. IEEE Int. Conf. Solid State Integr. Circuit Technol. 1247–1249 (2010). (10.1109/ICSICT.2010.5667622)
  26. Bufler, F. & Fichtner, W. Scaling of strained-Si n-MOSFETs into the ballistic regime and associated anisotropic effects. IEEE Trans. Electron Devices 50, 278–284 (2003). (10.1109/TED.2002.808552) / IEEE Trans. Electron Devices by F Bufler (2003)
  27. Bufler, F., Keith, S. & Meinerzhagen, B. Anisotropic ballistic in-plane transport of electrons in strained Si. Proc. SISPAD 239–242 (1998). (10.1007/978-3-7091-6827-1_60)
  28. Keyes, R. The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953). (10.1103/PhysRev.92.580) / Phys. Rev. by R Keyes (1953)
  29. Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34, 1853–1860 (1963). (10.1063/1.1729699) / J. Appl. Phys. by D Warschauer (1963)
  30. Jamieson, J. Crystal structures adopted by black phosphorus at high pressures. Science 139, 1291–1292 (1963). (10.1126/science.139.3561.1291) / Science by J Jamieson (1963)
  31. Wittig, J. & Matthias, B. T. Superconducting phosphorus. Science 160, 994–995 (1968). (10.1126/science.160.3831.994) / Science by J Wittig (1968)
  32. Maruyama, Y., Suzuki, S., Kobayashi, K. & Tanuma, S. Synthesis and some properties of black phosphorus single crystals. Physica 105B, 99–102 (1981). / Physica by Y Maruyama (1981)
  33. Sugai, S. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53, 753–755 (1985). (10.1016/0038-1098(85)90213-3) / Solid State Commun. by S Sugai (1985)
  34. Asahina, H. & Morita, A. Band structure and optical properties of black phosphorus. J. Phys. C Solid State Phys. 17, 1839–1852 (1984). (10.1088/0022-3719/17/11/006) / J. Phys. C Solid State Phys. by H Asahina (1984)
  35. Takahashi, T. et al. Electronic band structure of black phosphorus studied by angle-resolved ultraviolet photoelectron spectroscopy. J. Phys. C Solid State Phys. 18, 825–836 (1985). (10.1088/0022-3719/18/4/013) / J. Phys. C Solid State Phys. by T Takahashi (1985)
  36. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986). (10.1007/BF00617267) / Appl. Phys. A by A Morita (1986)
  37. Du, Y., Ouyang, C., Shi, S. & Lei, M. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107, 093718 (2010). (10.1063/1.3386509) / J. Appl. Phys. by Y Du (2010)
  38. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Tunable band gap and anisotropic optical response in few-layer black phosphorus. Preprint at http://arxiv.org/abs/1402.4192 (2014). (10.1103/PhysRevB.89.235319)
  39. Qiao, J., Kong, X., Hu, Z., Yang, F. & Ji, W. Few-layer black phosphorus: emerging 2D semiconductor with high anisotropic carrier mobility and linear dichroism. Preprint at http://arxiv.org/abs/1401.5045 (2014).
  40. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014). (10.1103/PhysRevLett.112.176801) / Phys. Rev. Lett. by AS Rodin (2014)
  41. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 7, 330–334 (2012). (10.1038/nnano.2012.59) / Nat. Nanotechnol. by H Yan (2012)
  42. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013). (10.1038/nphoton.2013.57) / Nat. Photon. by H Yan (2013)
  43. Asahina, H., Shindo, K. & Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn 51, 1193–1199 (1982). (10.1143/JPSJ.51.1193) / J. Phys. Soc. Jpn by H Asahina (1982)
  44. Akahama, Y., Kobayashi, M. & Kawamura, H. Raman study of black phosphorus up to 13GPa. Solid State Commun. 104, 311–315 (1997). (10.1016/S0038-1098(97)00325-6) / Solid State Commun. by Y Akahama (1997)
  45. Lazzeri, M. & Mauri, F. First-principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2 . Phys. Rev. Lett. 90, 036401 (2003). (10.1103/PhysRevLett.90.036401) / Phys. Rev. Lett. by M Lazzeri (2003)
  46. Perebeinos, V., Rotkin, S., Petrov, A. G. & Avouris, P. The effects of substrate phonon mode scattering on transport in carbon nanotubes. Nano Lett. 9, 312–316 (2009). (10.1021/nl8030086) / Nano Lett. by V Perebeinos (2009)
  47. Chen, J. H. et al. Charged-impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008). (10.1038/nphys935) / Nat. Phys. by JH Chen (2008)
  48. Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009). (10.1103/PhysRevB.80.235402) / Phys. Rev. B by W Zhu (2009)
  49. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013). (10.1038/nmat3687) / Nat. Mater. by B Radisavljevic (2013)
  50. Zhu, W. et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014). (10.1038/ncomms4087) / Nat. Commun. by W Zhu (2014)
  51. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). (10.1038/nnano.2014.35) / Nat. Nanotechnol. by L Li (2014)
  52. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). (10.1021/nn501226z) / ACS Nano by H Liu (2014)
  53. Koenig, S., Doganov, R., Schmidt, H., Castro Neto, A. & Ozyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014). (10.1063/1.4868132) / Appl. Phys. Lett. by S Koenig (2014)
Dates
Type When
Created 11 years ago (July 21, 2014, 6:19 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:28 p.m.)
Indexed 1 minute ago (Aug. 21, 2025, 4:54 a.m.)
Issued 11 years, 1 month ago (July 21, 2014)
Published 11 years, 1 month ago (July 21, 2014)
Published Online 11 years, 1 month ago (July 21, 2014)
Funders 0

None

@article{Xia_2014, title={Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms5458}, DOI={10.1038/ncomms5458}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Xia, Fengnian and Wang, Han and Jia, Yichen}, year={2014}, month=jul }