Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
39
Referenced
453
-
Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).
(
10.1021/cr1002326
) / Chem. Rev. by MG Walter (2010) -
Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).
(
10.1021/cr100246c
) / Chem. Rev. by TR Cook (2010) -
Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).
(
10.1038/nchem.141
) / Nat. Chem. by HB Gray (2009) -
Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).
(
10.1021/ar900253e
) / Acc. Chem. Res. by JL Dempsey (2009) -
Lin, Y., Yuan, G., Sheehan, S., Zhou, S. & Wang, D. Hematite-based solar water splitting: challenges and opportunities. Energy Environ. Sci. 4, 4862–4869 (2011).
(
10.1039/c1ee01850g
) / Energy Environ. Sci. by Y Lin (2011) -
Sun, Y. et al. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135, 17699–17702 (2013).
(
10.1021/ja4094764
) / J. Am. Chem. Soc. by Y Sun (2013) -
Koper, M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).
(
10.1016/j.jelechem.2010.10.004
) / J. Electroanal. Chem. by M Koper (2011) -
Gong, M. et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).
(
10.1021/ja4027715
) / J. Am. Chem. Soc. by M Gong (2013) -
Yeo, B. S. & Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011).
(
10.1021/ja200559j
) / J. Am. Chem. Soc. by BS Yeo (2011) -
Pintado, S., Goberna-Ferrón, S., Escudero-Adán, E. C. & Galán-Mascarós, J. R. n. Fast and persistent electrocatalytic water oxidation by Co–Fe prussian blue coordination polymers. J. Am. Chem. Soc. 135, 13270–13273 (2013).
(
10.1021/ja406242y
) / J. Am. Chem. Soc. by S Pintado (2013) -
Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).
(
10.1021/ja405351s
) / J. Am. Chem. Soc. by MW Louie (2013) -
Tsuji, E., Imanishi, A., Fukui, K.-i. & Nakato, Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 56, 2009–2016 (2011).
(
10.1016/j.electacta.2010.11.062
) / Electrochim. Acta by E Tsuji (2011) -
Hu, J.-M., Zhang, J.-Q. & Cao, C.-N. Oxygen evolution reaction on IrO2-based DSA type electrodes: kinetics analysis of Tafel lines and EIS. Int. J. Hydrogen Energy 29, 791–797 (2004).
(
10.1016/j.ijhydene.2003.09.007
) / Int. J. Hydrogen Energy by J-M Hu (2004) -
Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).
(
10.1126/science.1162018
) / Science by MW Kanan (2008) -
Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).
(
10.1126/science.1212858
) / Science by J Suntivich (2011) -
Rosen, J., Hutchings, G. S. & Jiao, F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc. 135, 4516–4521 (2013).
(
10.1021/ja400555q
) / J. Am. Chem. Soc. by J Rosen (2013) -
Kanan, M. W. et al. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).
(
10.1021/ja1023767
) / J. Am. Chem. Soc. by MW Kanan (2010) -
McAlpin, J. G. et al. EPR evidence for Co (IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 6882–6883 (2010).
(
10.1021/ja1013344
) / J. Am. Chem. Soc. by JG McAlpin (2010) -
Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).
(
10.1038/ncomms3439
) / Nat. Commun. by A Grimaud (2013) -
Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).
(
10.1016/0025-5408(80)90012-4
) / Mater. Res. Bull. by K Mizushima (1980) -
Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).
(
10.1149/1.2221184
) / J. Electrochem. Soc. by JN Reimers (1992) -
Shao-Horn, Y., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancy ordering in O3 layered LixCoO2 (x≈0.5), An electron diffraction study. J. Electrochem. Soc. 150, A366–A373 (2003).
(
10.1149/1.1553787
) / J. Electrochem. Soc. by Y Shao-Horn (2003) -
Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).
(
10.1073/pnas.1316792110
) / Proc. Natl Acad. Sci. USA by H Wang (2013) -
Deshazer, H., La Mantia, F., Wessells, C., Huggins, R. & Cui, Y. Synthesis of nanoscale lithium-ion battery cathode materials using a porous polymer precursor method. J. Electrochem. Soc. 158, A1079–A1082 (2011).
(
10.1149/1.3611428
) / J. Electrochem. Soc. by H Deshazer (2011) -
Lee, S. W. et al. The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134, 16959–16962 (2012).
(
10.1021/ja307814j
) / J. Am. Chem. Soc. by SW Lee (2012) -
Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J. & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012).
(
10.1021/cs300451q
) / ACS Catal. by JD Benck (2012) -
Takahashi, Y., Kijima, N., Tokiwa, K., Watanabe, T. & Akimoto, J. Single-crystal synthesis, structure refinement and electrical properties of Li0.5CoO2. J. Phys. Condens. Mater. 19, 436202 (2007).
(
10.1088/0953-8984/19/43/436202
) / J. Phys. Condens. Mater. by Y Takahashi (2007) -
Dahéron, L. et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2007).
(
10.1021/cm702546s
) / Chem. Mater. by L Dahéron (2007) -
Van der Ven, A., Aydinol, M., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).
(
10.1103/PhysRevB.58.2975
) / Phys. Rev. B by A Van der Ven (1998) -
Aydinol, M., Kohan, A., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997).
(
10.1103/PhysRevB.56.1354
) / Phys. Rev. B by M Aydinol (1997) -
Ceder, G., Van der Ven, A., Marianetti, C. & Morgan, D. First-principles alloy theory in oxides. Modelling Simul. Mater. Sci. Eng. 8, 311–321 (2000).
(
10.1088/0965-0393/8/3/311
) / Modelling Simul. Mater. Sci. Eng. by G Ceder (2000) -
Li, Y., Hasin, P. & Wu, Y. NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 22, 1926–1929 (2010).
(
10.1002/adma.200903896
) / Adv. Mater. by Y Li (2010) -
Nikolov, I. et al. Electrocatalytic activity of spinel related cobalties MxCo3−xO4 (M= Li, Ni, Cu) in the oxygen evolution reaction. J. Electroanal. Chem. 429, 157–168 (1997).
(
10.1016/S0022-0728(96)05013-9
) / J. Electroanal. Chem. by I Nikolov (1997) -
Trotochaud, L., Ranney, J. K., Williams, K. N. & Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012).
(
10.1021/ja307507a
) / J. Am. Chem. Soc. by L Trotochaud (2012) -
Landon, J. et al. Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2, 1793–1801 (2012).
(
10.1021/cs3002644
) / ACS Catal. by J Landon (2012) -
Miller, E. L. & Rocheleau, R. E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc. 144, 3072–3077 (1997).
(
10.1149/1.1837961
) / J. Electrochem. Soc. by EL Miller (1997) -
Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).
(
10.1149/1.2100463
) / J. Electrochem. Soc. by DA Corrigan (1987) -
Smith, R. D. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).
(
10.1126/science.1233638
) / Science by RD Smith (2013) -
Smith, R. D., Prévot, M. S., Fagan, R. D., Trudel, S. & Berlinguette, C. P. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586 (2013).
(
10.1021/ja403102j
) / J. Am. Chem. Soc. by RD Smith (2013)
Dates
Type | When |
---|---|
Created | 11 years, 1 month ago (July 4, 2014, 4:46 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 10:35 p.m.) |
Indexed | 1 week, 3 days ago (Aug. 20, 2025, 8:41 a.m.) |
Issued | 11 years, 1 month ago (July 4, 2014) |
Published | 11 years, 1 month ago (July 4, 2014) |
Published Online | 11 years, 1 month ago (July 4, 2014) |
@article{Lu_2014, title={Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms5345}, DOI={10.1038/ncomms5345}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Lu, Zhiyi and Wang, Haotian and Kong, Desheng and Yan, Kai and Hsu, Po-Chun and Zheng, Guangyuan and Yao, Hongbin and Liang, Zheng and Sun, Xiaoming and Cui, Yi}, year={2014}, month=jul }