Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Lu, Z., Wang, H., Kong, D., Yan, K., Hsu, P.-C., Zheng, G., Yao, H., Liang, Z., Sun, X., & Cui, Y. (2014). Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nature Communications, 5(1).

Authors 10
  1. Zhiyi Lu (first)
  2. Haotian Wang (additional)
  3. Desheng Kong (additional)
  4. Kai Yan (additional)
  5. Po-Chun Hsu (additional)
  6. Guangyuan Zheng (additional)
  7. Hongbin Yao (additional)
  8. Zheng Liang (additional)
  9. Xiaoming Sun (additional)
  10. Yi Cui (additional)
References 39 Referenced 453
  1. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). (10.1021/cr1002326) / Chem. Rev. by MG Walter (2010)
  2. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010). (10.1021/cr100246c) / Chem. Rev. by TR Cook (2010)
  3. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009). (10.1038/nchem.141) / Nat. Chem. by HB Gray (2009)
  4. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009). (10.1021/ar900253e) / Acc. Chem. Res. by JL Dempsey (2009)
  5. Lin, Y., Yuan, G., Sheehan, S., Zhou, S. & Wang, D. Hematite-based solar water splitting: challenges and opportunities. Energy Environ. Sci. 4, 4862–4869 (2011). (10.1039/c1ee01850g) / Energy Environ. Sci. by Y Lin (2011)
  6. Sun, Y. et al. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135, 17699–17702 (2013). (10.1021/ja4094764) / J. Am. Chem. Soc. by Y Sun (2013)
  7. Koper, M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011). (10.1016/j.jelechem.2010.10.004) / J. Electroanal. Chem. by M Koper (2011)
  8. Gong, M. et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013). (10.1021/ja4027715) / J. Am. Chem. Soc. by M Gong (2013)
  9. Yeo, B. S. & Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011). (10.1021/ja200559j) / J. Am. Chem. Soc. by BS Yeo (2011)
  10. Pintado, S., Goberna-Ferrón, S., Escudero-Adán, E. C. & Galán-Mascarós, J. R. n. Fast and persistent electrocatalytic water oxidation by Co–Fe prussian blue coordination polymers. J. Am. Chem. Soc. 135, 13270–13273 (2013). (10.1021/ja406242y) / J. Am. Chem. Soc. by S Pintado (2013)
  11. Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013). (10.1021/ja405351s) / J. Am. Chem. Soc. by MW Louie (2013)
  12. Tsuji, E., Imanishi, A., Fukui, K.-i. & Nakato, Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 56, 2009–2016 (2011). (10.1016/j.electacta.2010.11.062) / Electrochim. Acta by E Tsuji (2011)
  13. Hu, J.-M., Zhang, J.-Q. & Cao, C.-N. Oxygen evolution reaction on IrO2-based DSA type electrodes: kinetics analysis of Tafel lines and EIS. Int. J. Hydrogen Energy 29, 791–797 (2004). (10.1016/j.ijhydene.2003.09.007) / Int. J. Hydrogen Energy by J-M Hu (2004)
  14. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008). (10.1126/science.1162018) / Science by MW Kanan (2008)
  15. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). (10.1126/science.1212858) / Science by J Suntivich (2011)
  16. Rosen, J., Hutchings, G. S. & Jiao, F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc. 135, 4516–4521 (2013). (10.1021/ja400555q) / J. Am. Chem. Soc. by J Rosen (2013)
  17. Kanan, M. W. et al. Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010). (10.1021/ja1023767) / J. Am. Chem. Soc. by MW Kanan (2010)
  18. McAlpin, J. G. et al. EPR evidence for Co (IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 6882–6883 (2010). (10.1021/ja1013344) / J. Am. Chem. Soc. by JG McAlpin (2010)
  19. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013). (10.1038/ncomms3439) / Nat. Commun. by A Grimaud (2013)
  20. Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980). (10.1016/0025-5408(80)90012-4) / Mater. Res. Bull. by K Mizushima (1980)
  21. Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992). (10.1149/1.2221184) / J. Electrochem. Soc. by JN Reimers (1992)
  22. Shao-Horn, Y., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancy ordering in O3 layered LixCoO2 (x≈0.5), An electron diffraction study. J. Electrochem. Soc. 150, A366–A373 (2003). (10.1149/1.1553787) / J. Electrochem. Soc. by Y Shao-Horn (2003)
  23. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013). (10.1073/pnas.1316792110) / Proc. Natl Acad. Sci. USA by H Wang (2013)
  24. Deshazer, H., La Mantia, F., Wessells, C., Huggins, R. & Cui, Y. Synthesis of nanoscale lithium-ion battery cathode materials using a porous polymer precursor method. J. Electrochem. Soc. 158, A1079–A1082 (2011). (10.1149/1.3611428) / J. Electrochem. Soc. by H Deshazer (2011)
  25. Lee, S. W. et al. The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134, 16959–16962 (2012). (10.1021/ja307814j) / J. Am. Chem. Soc. by SW Lee (2012)
  26. Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J. & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012). (10.1021/cs300451q) / ACS Catal. by JD Benck (2012)
  27. Takahashi, Y., Kijima, N., Tokiwa, K., Watanabe, T. & Akimoto, J. Single-crystal synthesis, structure refinement and electrical properties of Li0.5CoO2. J. Phys. Condens. Mater. 19, 436202 (2007). (10.1088/0953-8984/19/43/436202) / J. Phys. Condens. Mater. by Y Takahashi (2007)
  28. Dahéron, L. et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2007). (10.1021/cm702546s) / Chem. Mater. by L Dahéron (2007)
  29. Van der Ven, A., Aydinol, M., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998). (10.1103/PhysRevB.58.2975) / Phys. Rev. B by A Van der Ven (1998)
  30. Aydinol, M., Kohan, A., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997). (10.1103/PhysRevB.56.1354) / Phys. Rev. B by M Aydinol (1997)
  31. Ceder, G., Van der Ven, A., Marianetti, C. & Morgan, D. First-principles alloy theory in oxides. Modelling Simul. Mater. Sci. Eng. 8, 311–321 (2000). (10.1088/0965-0393/8/3/311) / Modelling Simul. Mater. Sci. Eng. by G Ceder (2000)
  32. Li, Y., Hasin, P. & Wu, Y. NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 22, 1926–1929 (2010). (10.1002/adma.200903896) / Adv. Mater. by Y Li (2010)
  33. Nikolov, I. et al. Electrocatalytic activity of spinel related cobalties MxCo3−xO4 (M= Li, Ni, Cu) in the oxygen evolution reaction. J. Electroanal. Chem. 429, 157–168 (1997). (10.1016/S0022-0728(96)05013-9) / J. Electroanal. Chem. by I Nikolov (1997)
  34. Trotochaud, L., Ranney, J. K., Williams, K. N. & Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012). (10.1021/ja307507a) / J. Am. Chem. Soc. by L Trotochaud (2012)
  35. Landon, J. et al. Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2, 1793–1801 (2012). (10.1021/cs3002644) / ACS Catal. by J Landon (2012)
  36. Miller, E. L. & Rocheleau, R. E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc. 144, 3072–3077 (1997). (10.1149/1.1837961) / J. Electrochem. Soc. by EL Miller (1997)
  37. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987). (10.1149/1.2100463) / J. Electrochem. Soc. by DA Corrigan (1987)
  38. Smith, R. D. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013). (10.1126/science.1233638) / Science by RD Smith (2013)
  39. Smith, R. D., Prévot, M. S., Fagan, R. D., Trudel, S. & Berlinguette, C. P. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586 (2013). (10.1021/ja403102j) / J. Am. Chem. Soc. by RD Smith (2013)
Dates
Type When
Created 11 years, 1 month ago (July 4, 2014, 4:46 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:35 p.m.)
Indexed 1 week, 3 days ago (Aug. 20, 2025, 8:41 a.m.)
Issued 11 years, 1 month ago (July 4, 2014)
Published 11 years, 1 month ago (July 4, 2014)
Published Online 11 years, 1 month ago (July 4, 2014)
Funders 0

None

@article{Lu_2014, title={Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms5345}, DOI={10.1038/ncomms5345}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Lu, Zhiyi and Wang, Haotian and Kong, Desheng and Yan, Kai and Hsu, Po-Chun and Zheng, Guangyuan and Yao, Hongbin and Liang, Zheng and Sun, Xiaoming and Cui, Yi}, year={2014}, month=jul }