Bibliography
Denk, R., Hohage, M., Zeppenfeld, P., Cai, J., Pignedoli, C. A., Söde, H., Fasel, R., Feng, X., Müllen, K., Wang, S., Prezzi, D., Ferretti, A., Ruini, A., Molinari, E., & Ruffieux, P. (2014). Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 5(1).
Authors
15
- Richard Denk (first)
- Michael Hohage (additional)
- Peter Zeppenfeld (additional)
- Jinming Cai (additional)
- Carlo A. Pignedoli (additional)
- Hajo Söde (additional)
- Roman Fasel (additional)
- Xinliang Feng (additional)
- Klaus Müllen (additional)
- Shudong Wang (additional)
- Deborah Prezzi (additional)
- Andrea Ferretti (additional)
- Alice Ruini (additional)
- Elisa Molinari (additional)
- Pascal Ruffieux (additional)
References
43
Referenced
172
-
Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).
(
10.1021/nl0617033
) / Nano Lett. by V Barone (2006) -
Han, M., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
(
10.1103/PhysRevLett.98.206805
) / Phys. Rev. Lett. by M Han (2007) -
Avouris, P. Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010).
(
10.1021/nl102824h
) / Nano Lett. by P Avouris (2010) -
Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920–1923 (1996).
(
10.1143/JPSJ.65.1920
) / J. Phys. Soc. Jpn by M Fujita (1996) -
Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).
(
10.1038/nature05180
) / Nature by Y-W Son (2006) -
Wassmann, T., Seitsonen, A., Saitta, A., Lazzeri, M. & Mauri, F. Structure, stability, edge states, and aromaticity of graphene ribbons. Phys. Rev. Lett. 101, 096402 (2008).
(
10.1103/PhysRevLett.101.096402
) / Phys. Rev. Lett. by T Wassmann (2008) -
Chen, Y., Jayasekera, T., Calzolari, A., Kim, K. W. & Nardelli, M. B. Thermoelectric properties of graphene nanoribbons, junctions and superlattices. J. Phys. Condens. Matter 22, 372202 (2010).
(
10.1088/0953-8984/22/37/372202
) / J. Phys. Condens. Matter by Y Chen (2010) -
Yang, L., Cohen, M. L. & Louie, S. G. Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 7, 3112–3115 (2007).
(
10.1021/nl0716404
) / Nano Lett. by L Yang (2007) -
Prezzi, D., Varsano, D., Ruini, A., Marini, A. & Molinari, E. Optical properties of graphene nanoribbons: the role of many-body effects. Phys. Rev. B 77, 041404 (2008).
(
10.1103/PhysRevB.77.041404
) / Phys. Rev. B by D Prezzi (2008) -
Prezzi, D., Varsano, D., Ruini, A. & Molinari, E. Quantum dot states and optical excitations of edge-modulated graphene nanoribbons. Phys. Rev. B 84, 041401 (2011).
(
10.1103/PhysRevB.84.041401
) / Phys. Rev. B by D Prezzi (2011) -
Wang, S. & Wang, J. Quasiparticle energies and optical excitations in chevron-type graphene nanoribbon. J. Phys. Chem. C 116, 10193–10197 (2012).
(
10.1021/jp2125872
) / J. Phys. Chem. C by S Wang (2012) -
Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).
(
10.1038/nature09211
) / Nature by J Cai (2010) -
Ruffieux, P. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 6, 6930–6935 (2012).
(
10.1021/nn3021376
) / ACS Nano by P Ruffieux (2012) -
Chen, Y.-C. et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013).
(
10.1021/nn401948e
) / ACS Nano by Y-C Chen (2013) -
Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713–717 (2012).
(
10.1038/nnano.2012.169
) / Nat. Nanotechnol. by M Koch (2012) -
Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. & Louie, S. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
(
10.1103/PhysRevLett.99.186801
) / Phys. Rev. Lett. by L Yang (2007) -
Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).
(
10.1038/nchem.1819
) / Nat. Chem. by A Narita (2014) -
Vo, T. H. et al. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014).
(
10.1038/ncomms4189
) / Nat. Commun. by TH Vo (2014) -
Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
(
10.1126/science.1156965
) / Science by RR Nair (2008) -
Prezzi, D. & Molinari, E. Optical excitations of quasi-one-dimensional systems: carbon nanotubes versus polymers and semiconductor wires. Phys. Stat. Solid. 203, 3602–3610 (2006).
(
10.1002/pssa.200622407
) / Phys. Stat. Solid. by D Prezzi (2006) -
Weightman, P., Martin, D. S., Cole, R. J. & Farrell, T. Reflection anisotropy spectroscopy. Rep. Prog. Phys. 68, 1251–1341 (2005).
(
10.1088/0034-4885/68/6/R01
) / Rep. Prog. Phys. by P Weightman (2005) -
Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 23–27 (2012).
(
10.1103/PhysRevLett.108.216801
) / Phys. Rev. Lett. by S Linden (2012) -
Sfeir, M. Y. et al. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 306, 1540–1543 (2004).
(
10.1126/science.1103294
) / Science by MY Sfeir (2004) -
Onida, G. & Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).
(
10.1103/RevModPhys.74.601
) / Rev. Mod. Phys. by G Onida (2002) -
Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev 139, A796–A823 (1965).
(
10.1103/PhysRev.139.A796
) / Phys. Rev by L Hedin (1965) -
Hybertsen, M. & Louie, S. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).
(
10.1103/PhysRevB.34.5390
) / Phys. Rev. B by M Hybertsen (1986) -
Strinati, G. Application of the Green’s functions method to the study of the optical properties of semiconductors. La Riv. del Nuovo Cim. 11, 1–86 (1988).
(
10.1007/BF02725962
) / La Riv. del Nuovo Cim. by G Strinati (1988) -
Albrecht, S., Reining, L., Del Sole, R. & Onida, G. Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80, 4510–4513 (1998).
(
10.1103/PhysRevLett.80.4510
) / Phys. Rev. Lett. by S Albrecht (1998) -
Neaton, J., Hybertsen, M. & Louie, S. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).
(
10.1103/PhysRevLett.97.216405
) / Phys. Rev. Lett. by J Neaton (2006) -
Garcia-Lastra, J. M. & Thygesen, K. S. Renormalization of optical excitations in molecules near a metal surface. Phys. Rev. Lett. 106, 187402 (2011).
(
10.1103/PhysRevLett.106.187402
) / Phys. Rev. Lett. by JM Garcia-Lastra (2011) -
Spataru, C. D. Electronic and optical gap renormalization in carbon nanotubes near a metallic surface. Phys. Rev. B 88, 125412 (2013).
(
10.1103/PhysRevB.88.125412
) / Phys. Rev. B by CD Spataru (2013) -
Spataru, C., Ismail-Beigi, S., Benedict, L. & Louie, S. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).
(
10.1103/PhysRevLett.92.077402
) / Phys. Rev. Lett. by C Spataru (2004) -
Chang, E., Bussi, G., Ruini, A. & Molinari, E. Excitons in carbon nanotubes: an ab initio symmetry-based approach. Phys. Rev. Lett. 92, 196401 (2004).
(
10.1103/PhysRevLett.92.196401
) / Phys. Rev. Lett. by E Chang (2004) -
Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005).
(
10.1103/PhysRevB.72.241402
) / Phys. Rev. B by J Maultzsch (2005) -
Ruini, A., Caldas, M., Bussi, G. & Molinari, E. Solid state effects on exciton states and optical properties of PPV. Phys. Rev. Lett. 88, 206403 (2002).
(
10.1103/PhysRevLett.88.206403
) / Phys. Rev. Lett. by A Ruini (2002) -
Zaric, S. et al. Excitons in carbon nanotubes with broken time-reversal symmetry. Phys. Rev. Lett. 96, 016406 (2006).
(
10.1103/PhysRevLett.96.016406
) / Phys. Rev. Lett. by S Zaric (2006) -
Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photon. 2, 341–350 (2008).
(
10.1038/nphoton.2008.94
) / Nat. Photon. by P Avouris (2008) -
Lin, H. et al. Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy. Nat. Mater. 9, 235–238 (2010).
(
10.1038/nmat2624
) / Nat. Mater. by H Lin (2010) -
Sun, L. D. et al. Layer resolved evolution of the optical properties of α-sexithiophene thin films. Phys. Chem. Chem. Phys. 14, 13651–13655 (2012).
(
10.1039/c2cp42270k
) / Phys. Chem. Chem. Phys. by LD Sun (2012) -
Hu, Y., Maschek, K., Sun, L. D., Hohage, M. & Zeppenfeld, P. para-Sexiphenyl thin film growth on Cu(110) and Cu(110)–(2 × 1)O surfaces. Surf. Sci. 600, 762–769 (2006).
(
10.1016/j.susc.2005.11.027
) / Surf. Sci. by Y Hu (2006) -
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
(
10.1088/0953-8984/21/39/395502
) / J. Phys. Condens. Matter by P Giannozzi (2009) -
Rozzi, C., Varsano, D., Marini, A., Gross, E. & Rubio, A. Exact Coulomb cutoff technique for supercell calculations. Phys. Rev. B 73, 205119 (2006).
(
10.1103/PhysRevB.73.205119
) / Phys. Rev. B by C Rozzi (2006) -
Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).
(
10.1016/j.cpc.2009.02.003
) / Comput. Phys. Commun. by A Marini (2009)
Dates
Type | When |
---|---|
Created | 11 years, 1 month ago (July 8, 2014, 6:20 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 10:41 p.m.) |
Indexed | 4 days, 13 hours ago (Aug. 26, 2025, 3:15 a.m.) |
Issued | 11 years, 1 month ago (July 8, 2014) |
Published | 11 years, 1 month ago (July 8, 2014) |
Published Online | 11 years, 1 month ago (July 8, 2014) |
@article{Denk_2014, title={Exciton-dominated optical response of ultra-narrow graphene nanoribbons}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms5253}, DOI={10.1038/ncomms5253}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Denk, Richard and Hohage, Michael and Zeppenfeld, Peter and Cai, Jinming and Pignedoli, Carlo A. and Söde, Hajo and Fasel, Roman and Feng, Xinliang and Müllen, Klaus and Wang, Shudong and Prezzi, Deborah and Ferretti, Andrea and Ruini, Alice and Molinari, Elisa and Ruffieux, Pascal}, year={2014}, month=jul }