Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Collins, L., Jesse, S., Kilpatrick, J. I., Tselev, A., Varenyk, O., Okatan, M. B., Weber, S. A. L., Kumar, A., Balke, N., Kalinin, S. V., & Rodriguez, B. J. (2014). Probing charge screening dynamics and electrochemical processes at the solid–liquid interface with electrochemical force microscopy. Nature Communications, 5(1).

Authors 11
  1. Liam Collins (first)
  2. Stephen Jesse (additional)
  3. Jason I. Kilpatrick (additional)
  4. Alexander Tselev (additional)
  5. Oleksandr Varenyk (additional)
  6. M. Baris Okatan (additional)
  7. Stefan A. L. Weber (additional)
  8. Amit Kumar (additional)
  9. Nina Balke (additional)
  10. Sergei V. Kalinin (additional)
  11. Brian J. Rodriguez (additional)
References 37 Referenced 100
  1. Mansfeld, F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J. Appl. Electrochem. 25, 187–202 (1995). / J. Appl. Electrochem. by F Mansfeld (1995)
  2. Böhni, H., Suter, T. & Schreyer, A. Micro-and nanotechniques to study localized corrosion. Electrochim. Acta 40, 1361–1368 (1995). (10.1016/0013-4686(95)00072-M) / Electrochim. Acta by H Böhni (1995)
  3. Drummond, T. G., Hill, M. G. & Barton, J. K. Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003). (10.1038/nbt873) / Nat. Biotechnol. by TG Drummond (2003)
  4. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005). (10.1038/nmat1368) / Nat. Mater. by AS Aricò (2005)
  5. Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2010). (10.1039/C0EE00295J) / Energy Environ. Sci. by M Pumera (2010)
  6. Hill, H. The development of bioelectrochemistry. Coord. Chem. Rev. 151, 115–123 (1996). (10.1016/0010-8545(95)01219-2) / Coord. Chem. Rev. by H Hill (1996)
  7. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  8. Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000). (10.1016/S0013-4686(00)00354-6) / Electrochim. Acta by R Kötz (2000)
  9. Carrette, L., Friedrich, K. & Stimming, U. Fuel cells–fundamentals and applications. Fuel Cells 1, 5–39 (2001). (10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G) / Fuel Cells by L Carrette (2001)
  10. Bazant, M. Z., Thornton, K. & Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004). (10.1103/PhysRevE.70.021506) / Phys. Rev. E by MZ Bazant (2004)
  11. Squires, T. M. & Bazant, M. Z. Induced-charge electro-osmosis. J. Fluid Mech. 509, 72–80 (2004). (10.1017/S0022112004009309) / J. Fluid Mech. by TM Squires (2004)
  12. Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 48–88 (2009). (10.1016/j.cis.2009.10.001) / Adv. Colloid Interface Sci. by MZ Bazant (2009)
  13. Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. Nonlinear electrokinetics at large voltages. New J. Phys. 11, 075016 (2009). (10.1088/1367-2630/11/7/075016) / New J. Phys. by MZ Bazant (2009)
  14. Nonnenmacher, M., O'Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991). (10.1063/1.105227) / Appl. Phys. Lett. by M Nonnenmacher (1991)
  15. Sinensky, A. K. & Belcher, A. M. Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy. Nat. Nanotechnol. 2, 653–659 (2007). (10.1038/nnano.2007.293) / Nat. Nanotechnol. by AK Sinensky (2007)
  16. Mohn, F., Gross, L. & Meyer, G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012). (10.1038/nnano.2012.20) / Nat. Nanotechnol. by F Mohn (2012)
  17. Bazant, M. Z. & Squires, T. M. Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92, 066101 (2004). (10.1103/PhysRevLett.92.066101) / Phys. Rev. Lett. by MZ Bazant (2004)
  18. Hillier, A. C., Kim, S. & Bard, A. J. Measurement of double-layer forces at the electrode/electrolyte interface using the atomic force microscope: potential and anion dependent interactions. J. Phys. Chem. 100, 18808–18817 (1996). (10.1021/jp961629k) / J. Phys. Chem. by AC Hillier (1996)
  19. Raiteri, R. & Butt, H. J. Measuring electrochemically induced surface stress with an atomic force microscope. J. Phys. Chem. 99, 15728–15732 (1995). (10.1021/j100043a008) / J. Phys. Chem. by R Raiteri (1995)
  20. Domanski, A. L. et al. Kelvin probe force microscopy in non-polar liquids. Langmuir 28, 13892–13899 (2012). (10.1021/la302451h) / Langmuir by AL Domanski (2012)
  21. Kobayashi, N., Asakawa, H. & Fukuma, T. Nanoscale potential measurements in liquid by frequency modulation atomic force microscopy. Rev. Sci. Instrum. 81, 123705 (2010). (10.1063/1.3514148) / Rev. Sci. Instrum. by N Kobayashi (2010)
  22. Kobayashi, N., Asakawa, H. & Fukuma, T. Quantitative potential measurements of nanoparticles with different surface charges in liquid by open-loop electric potential microscopy. J. Appl. Phys. 110, 044315 (2011). (10.1063/1.3625230) / J. Appl. Phys. by N Kobayashi (2011)
  23. Sounart, T. L. et al. Frequency dependent electrostatic actuation in microfluidic MEMS. J. Microelectromech. Syst. 14, 125–133 (2005). (10.1109/JMEMS.2004.839006) / J. Microelectromech. Syst. by TL Sounart (2005)
  24. Umeda, K. et al. High-resolution frequency-modulation atomic force microscopy in liquids using electrostatic excitation method. Appl. Phys. Express 3, 5205–5208 (2010). (10.1143/APEX.3.065205) / Appl. Phys. Express by K Umeda (2010)
  25. Umeda, K., Kobayashi, K., Matsushige, K. & Yamada, H. Direct actuation of cantilever in aqueous solutions by electrostatic force using high-frequency electric fields. Appl. Phys. Lett. 101, 123112 (2012). (10.1063/1.4754289) / Appl. Phys. Lett. by K Umeda (2012)
  26. Marchand, D. J. et al. Non-contact AFM imaging in water using electrically driven cantilever vibration. Langmuir 29, 6762–6769 (2013). (10.1021/la4002797) / Langmuir by DJ Marchand (2013)
  27. Gramse, G. et al. Dynamic electrostatic force microscopy in liquid media. Appl. Phys. Lett. 101, 213108 (2012). (10.1063/1.4768164) / Appl. Phys. Lett. by G Gramse (2012)
  28. Gramse, G. et al. Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy. Biophys. J. 104, 1257–1262 (2013). (10.1016/j.bpj.2013.02.011) / Biophys. J. by G Gramse (2013)
  29. Umeda, K. et al. Analysis of capacitive force acting on a cantilever tip at solid/liquid interfaces. J. Appl. Phys. 113, 154311 (2013). (10.1063/1.4801795) / J. Appl. Phys. by K Umeda (2013)
  30. Kilic, M. S., Bazant, M. Z. & Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75, 021502 (2007). (10.1103/PhysRevE.75.021502) / Phys. Rev. E by MS Kilic (2007)
  31. Kilic, M. S., Bazant, M. Z. & Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75, 021503 (2007). (10.1103/PhysRevE.75.021503) / Phys. Rev. E by MS Kilic (2007)
  32. Collins, L. et al. Dual harmonic Kelvin probe force microscopy at the graphene-liquid interface. Appl. Phys. Lett. 104, 133103 (2014). (10.1063/1.4870074) / Appl. Phys. Lett. by L Collins (2014)
  33. Wang, J. Analytical Electrochemistry Wiley (2006). (10.1002/0471790303)
  34. Collins, L. et al. Open loop Kelvin probe force microscopy with single and multi-frequency excitation. Nanotechnology 24, 475702 (2013). (10.1088/0957-4484/24/47/475702) / Nanotechnology by L Collins (2013)
  35. Giridharagopal, R. et al. Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. Nano Lett. 12, 893–898 (2012). (10.1021/nl203956q) / Nano Lett. by R Giridharagopal (2012)
  36. Jolliffe, I. T. Principal Component Analysis Springer (1986). (10.1007/978-1-4757-1904-8)
  37. Koneshan, S., Rasaiah, J. C., Lynden-Bell, R. & Lee, S. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 °C. J. Phys. Chem. B 102, 4193–4204 (1998). (10.1021/jp980642x) / J. Phys. Chem. B by S Koneshan (1998)
Dates
Type When
Created 11 years, 3 months ago (May 20, 2014, 9:15 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:50 p.m.)
Indexed 1 week, 1 day ago (Aug. 23, 2025, 9:26 p.m.)
Issued 11 years, 3 months ago (May 20, 2014)
Published 11 years, 3 months ago (May 20, 2014)
Published Online 11 years, 3 months ago (May 20, 2014)
Funders 0

None

@article{Collins_2014, title={Probing charge screening dynamics and electrochemical processes at the solid–liquid interface with electrochemical force microscopy}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4871}, DOI={10.1038/ncomms4871}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Collins, Liam and Jesse, Stephen and Kilpatrick, Jason I. and Tselev, Alexander and Varenyk, Oleksandr and Okatan, M. Baris and Weber, Stefan A. L. and Kumar, Amit and Balke, Nina and Kalinin, Sergei V. and Rodriguez, Brian J.}, year={2014}, month=may }