Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Sun, Z., Liao, T., Dou, Y., Hwang, S. M., Park, M.-S., Jiang, L., Kim, J. H., & Dou, S. X. (2014). Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nature Communications, 5(1).

Authors 8
  1. Ziqi Sun (first)
  2. Ting Liao (additional)
  3. Yuhai Dou (additional)
  4. Soo Min Hwang (additional)
  5. Min-Sik Park (additional)
  6. Lei Jiang (additional)
  7. Jung Ho Kim (additional)
  8. Shi Xue Dou (additional)
References 47 Referenced 804
  1. Tao, J., Luttrell, T. & Batzill, M. A two-dimensional phase of TiO2 with a reduced band gap. Nat. Chem. 3, 296–300 (2011). (10.1038/nchem.1006) / Nat. Chem. by J Tao (2011)
  2. Takada, K. et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003). (10.1038/nature01450) / Nature by K Takada (2003)
  3. Osada, M. & Sasaki, T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012). (10.1002/adma.201103241) / Adv. Mater. by M Osada (2012)
  4. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  5. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007). (10.1038/nmat1849) / Nat. Mater. by AK Geim (2007)
  6. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012). (10.1038/nature11458) / Nature by KS Novoselov (2012)
  7. Wang, Q. H., Kalantar-Zedeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). (10.1038/nnano.2012.193) / Nat. Nanotechnol. by QH Wang (2012)
  8. Koski, K. & Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 7, 3739–3743 (2013). (10.1021/nn4022422) / ACS Nano by K Koski (2013)
  9. Tiwari, J. N., Tiwari, R. N. & Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803 (2012). (10.1016/j.pmatsci.2011.08.003) / Prog. Mater. Sci. by JN Tiwari (2012)
  10. Dai, Z., Pan, Z. W. & Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9–24 (2003). (10.1002/adfm.200390013) / Adv. Funct. Mater. by Z Dai (2003)
  11. Sun, Z. et al. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 133, 19314–19317 (2011). (10.1021/ja208468d) / J. Am. Chem. Soc. by Z Sun (2011)
  12. Sun, Z. et al. Robust superhydrophobicity of hierarchical ZnO hollow microspheres fabricated by two-step self-assembly. Nano Res. 6, 726–735 (2013). (10.1007/s12274-013-0350-6) / Nano Res. by Z Sun (2013)
  13. Coleman, J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011). (10.1126/science.1194975) / Science by J Coleman (2011)
  14. Okamoto, H., Sugiyama, Y. & Nakano, H. Synthesis and modification of silicon nanosheets and other silicon nanomaterials. Chem. Eur. J. 17, 9864–9887 (2011). (10.1002/chem.201100641) / Chem. Eur. J. by H Okamoto (2011)
  15. Sasaki, T., Watanabe, M., Hashizume, H., Yamada, H. & Nakazawa, H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate: pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 118, 8329–8335 (1996). (10.1021/ja960073b) / J. Am. Chem. Soc. by T Sasaki (1996)
  16. Ma, R. & Sasaki, T. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22, 5082–5104 (2010). (10.1002/adma.201001722) / Adv. Mater. by R Ma (2010)
  17. Schaak, R. E. & Mallouk, T. E. Self-assembly of tiled perovskite monolayer and multilayer thin films. Chem. Mater. 12, 2513–2516 (2000). (10.1021/cm0004073) / Chem. Mater. by RE Schaak (2000)
  18. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013). (10.1126/science.1226419) / Science by V Nicolosi (2013)
  19. Yang, P. et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998). (10.1038/24132) / Nature by P Yang (1998)
  20. Zhao, D. et al. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998). (10.1126/science.279.5350.548) / Science by D Zhao (1998)
  21. Hamley, I. W. Nanostructure fabrication using block copolymers. Nanotechnology 14, R39–R54 (2003). (10.1088/0957-4484/14/10/201) / Nanotechnology by IW Hamley (2003)
  22. Xia, Y. et al. Self-assembly of self-limiting monodisperse superparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6, 580–587 (2011). (10.1038/nnano.2011.121) / Nat. Nanotechnol. by Y Xia (2011)
  23. Pang, X., Zhao, L., Han, W., Xin, K. & Lin, Z. A general and robust strategy for the synthesis of nearly monodispersed colloidal nanocrystals. Nat. Nanotechnol. 8, 426–431 (2013). (10.1038/nnano.2013.85) / Nat. Nanotechnol. by X Pang (2013)
  24. Alexandridis, P. & Hatton, T. A. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modelling. Colloids Surf. A 96, 1–46 (1995). (10.1016/0927-7757(94)03028-X) / Colloids Surf. A by P Alexandridis (1995)
  25. Dong, R. & Hao, J. Complex fluids of poly(oxyethylene) monoalkyl ether nonionic surfactants. Chem. Rev. 110, 4978–5022 (2010). (10.1021/cr9003743) / Chem. Rev. by R Dong (2010)
  26. Zana, R. Aqueous surfactant-alcohol systems: a review. Adv. Colloid Interface Sci. 57, 1–64 (1995). (10.1016/0001-8686(95)00235-I) / Adv. Colloid Interface Sci. by R Zana (1995)
  27. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007). (10.1038/nature05545) / Nature by JC Meyer (2007)
  28. Wang, Y. et al. Lattice distortion oriented angular self-assembly of exfoliated monolayer titania sheets. J. Am. Chem. Soc. 133, 695–697 (2011). (10.1021/ja109314u) / J. Am. Chem. Soc. by Y Wang (2011)
  29. Erdem, B. et al. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17, 2664–2669 (2001). (10.1021/la0015213) / Langmuir by B Erdem (2001)
  30. Wendt, S. et al. The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320, 1755–1759 (2008). (10.1126/science.1159846) / Science by S Wendt (2008)
  31. Löwdin, P. O. On the non‐orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365–375 (1950). (10.1063/1.1747632) / J. Chem. Phys. by PO Löwdin (1950)
  32. de Andrade, P. C. P. Probability current in protein electron transfer: Löwdin population analysis. Int. J. Quantum Chem. 112, 3325–3332 (2012). (10.1002/qua.24197) / Int. J. Quantum Chem. by PCP de Andrade (2012)
  33. Topsakal, M., Cahangirov, S., Bekaroglu, E. & Ciraci, S. A first-principles study of zinc oxide honeycomb structures. Phys. Rev. B 80, 235119 (2009). (10.1103/PhysRevB.80.235119) / Phys. Rev. B by M Topsakal (2009)
  34. Yang, H. G. et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008). (10.1038/nature06964) / Nature by HG Yang (2008)
  35. Liu, G., Yu, J. C., Lu, G. Q. & Cheng, H. M. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem. Commun. 47, 6763–6783 (2011). (10.1039/c1cc10665a) / Chem. Commun. by G Liu (2011)
  36. Satoh, N., Nakshima, T., Kamikura, K. & Yamamoto, K. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat. Nanotechnol. 3, 106–111 (2008). (10.1038/nnano.2008.2) / Nat. Nanotechnol. by N Satoh (2008)
  37. Peng, L., Hu, L. & Fang, X. Low-dimensional nanostructure ultraviolet photodetectors. Adv. Mater. 25, 5321–5328 (2013). (10.1002/adma.201301802) / Adv. Mater. by L Peng (2013)
  38. Bae, S. et al. Roll-to-roll production of 30-in graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). (10.1038/nnano.2010.132) / Nat. Nanotechnol. by S Bae (2010)
  39. Choi, D. et al. Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 22, 2187–2192 (2010). (10.1002/adma.200903815) / Adv. Mater. by D Choi (2010)
  40. Choi, M. Y. et al. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185–2189 (2009). (10.1002/adma.200803605) / Adv. Mater. by MY Choi (2009)
  41. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). (10.1038/nature07719) / Nature by KS Kim (2009)
  42. He, T. & Yao, J. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog. Mater. Sci. 51, 810–879 (2006). (10.1016/j.pmatsci.2005.12.001) / Prog. Mater. Sci. by T He (2006)
  43. Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). (10.1088/0953-8984/21/39/395502) / J. Phys. Condens. Matter by P Giannozzi (2009)
  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  45. Vanderbilt, D. Soft self- consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). (10.1103/PhysRevB.41.7892) / Phys. Rev. B by D Vanderbilt (1990)
  46. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by HJ Monkhorst (1976)
  47. Billeter, S. R., Turner, A. J. & Thiel, W. Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates. Phys. Chem. Chem. Phys. 2, 2177–2186 (2000). (10.1039/a909486e) / Phys. Chem. Chem. Phys. by SR Billeter (2000)
Dates
Type When
Created 11 years, 3 months ago (May 12, 2014, 7:31 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:54 p.m.)
Indexed 21 hours, 52 minutes ago (Aug. 31, 2025, 6:25 a.m.)
Issued 11 years, 3 months ago (May 12, 2014)
Published 11 years, 3 months ago (May 12, 2014)
Published Online 11 years, 3 months ago (May 12, 2014)
Funders 0

None

@article{Sun_2014, title={Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4813}, DOI={10.1038/ncomms4813}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Sun, Ziqi and Liao, Ting and Dou, Yuhai and Hwang, Soo Min and Park, Min-Sik and Jiang, Lei and Kim, Jung Ho and Dou, Shi Xue}, year={2014}, month=may }