Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Zheng, Y., Jiao, Y., Zhu, Y., Li, L. H., Han, Y., Chen, Y., Du, A., Jaroniec, M., & Qiao, S. Z. (2014). Hydrogen evolution by a metal-free electrocatalyst. Nature Communications, 5(1).

Authors 9
  1. Yao Zheng (first)
  2. Yan Jiao (additional)
  3. Yihan Zhu (additional)
  4. Lu Hua Li (additional)
  5. Yu Han (additional)
  6. Ying Chen (additional)
  7. Aijun Du (additional)
  8. Mietek Jaroniec (additional)
  9. Shi Zhang Qiao (additional)
References 38 Referenced 2,053
  1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2007). (10.1073/pnas.0603395103) / Proc. Natl Acad. Sci. USA by NS Lewis (2007)
  2. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004). (10.1126/science.1103197) / Science by JA Turner (2004)
  3. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). (10.1021/cr1002326) / Chem. Rev. by MG Walter (2010)
  4. Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta. 47, 3571–3594 (2002). (10.1016/S0013-4686(02)00329-8) / Electrochim. Acta. by BE Conway (2002)
  5. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011). (10.1126/science.1211934) / Science by R Subbaraman (2011)
  6. Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009). (10.1126/science.1179773) / Science by A Le Goff (2009)
  7. Zhuo, J. et al. Salts of C60(OH)8 electrodeposited onto a glassy carbon electrode: surprising catalytic performance in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 52, 10867–10870 (2013). (10.1002/anie.201305328) / Angew. Chem. Int. Ed. by J Zhuo (2013)
  8. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010). (10.1021/cr100246c) / Chem. Rev. by TR Cook (2010)
  9. Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011). (10.1002/anie.201007987) / Angew. Chem. Int. Ed. by V Artero (2011)
  10. DuBois, M. R. & DuBois, D. L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 38, 62–72 (2009). (10.1039/B801197B) / Chem. Soc. Rev. by MR DuBois (2009)
  11. Cobo, S. et al. A Janus cobalt-based catalytic material for electro-splitting of water. Nat. Mater. 11, 802–807 (2012). (10.1038/nmat3385) / Nat. Mater. by S Cobo (2012)
  12. Du, P. & Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021 (2012). (10.1039/c2ee03250c) / Energy Environ. Sci. by P Du (2012)
  13. Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013). (10.1021/ja403440e) / J. Am. Chem. Soc. by EJ Popczun (2013)
  14. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). (10.1126/science.1141483) / Science by TF Jaramillo (2007)
  15. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). (10.1038/nmat3439) / Nat. Mater. by J Kibsgaard (2012)
  16. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013). (10.1038/nmat3700) / Nat. Mater. by D Voiry (2013)
  17. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013). (10.1038/nmat3673) / Nat. Mater. by S Najmaei (2013)
  18. Laursen, A. B., Kegnæs, S., Dahla, S. & Chorkendorff, I. Molybdenum sulfides–efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577–5591 (2012). (10.1039/c2ee02618j) / Energy Environ. Sci. by AB Laursen (2012)
  19. Merki, D. & Hu, X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011). (10.1039/c1ee01970h) / Energy Environ. Sci. by D Merki (2011)
  20. Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). (10.1126/science.1168049) / Science by K Gong (2009)
  21. Mirzakulova, E. et al. Electrode-assisted catalytic water oxidation by a flavin derivative. Nat. Chem. 4, 794–801 (2012). (10.1038/nchem.1439) / Nat. Chem. by E Mirzakulova (2012)
  22. Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S. & Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4, 2390 (2013). (10.1038/ncomms3390) / Nat. Commun. by Y Zhao (2013)
  23. Zheng, Y. et al. Nanoporous graphitic-C3N4@Carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 133, 20116–20119 (2011). (10.1021/ja209206c) / J. Am. Chem. Soc. by Y Zheng (2011)
  24. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). (10.1038/nmat2317) / Nat. Mater. by X Wang (2009)
  25. Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008). (10.1039/b800274f) / J. Mater. Chem. by A Thomas (2008)
  26. Suenaga, K. & Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010). (10.1038/nature09664) / Nature by K Suenaga (2010)
  27. Muller, D. A., Tzou, Y., Raj, R. & Silcox, J. Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution. Nature 366, 725–727 (1993). (10.1038/366725a0) / Nature by DA Muller (1993)
  28. Rosenberg, R. A., Love, P. J. & Rehn, V. Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite. Phys. Rev. B 33, 4034–4037 (1985). (10.1103/PhysRevB.33.4034) / Phys. Rev. B by RA Rosenberg (1985)
  29. Sheng, Z. et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011). (10.1021/nn103584t) / ACS Nano by Z Sheng (2011)
  30. Chen, Z. et al. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011). (10.1021/nl2020476) / Nano Lett. by Z Chen (2011)
  31. Chen, W. et al. Hydrogen-evolution catalysts based on non-noble metal nickel molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012). (10.1002/anie.201200699) / Angew. Chem. Int. Ed. by W Chen (2012)
  32. Merki, D., Vrubel, H., Rovelli, L., Fierro, S. & Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012). (10.1039/c2sc20539d) / Chem. Sci. by D Merki (2012)
  33. Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011). (10.1021/ja201269b) / J. Am. Chem. Soc. by Y Li (2011)
  34. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). (10.1038/nchem.121) / Nat. Chem. by JK Nørskov (2009)
  35. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005). (10.1149/1.1856988) / J. Electrochem. Soc. by JK Nørskov (2005)
  36. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006). (10.1038/nmat1752) / Nat. Mater. by J Greeley (2006)
  37. Skulason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010). (10.1021/jp1048887) / J. Phys. Chem. C by E Skulason (2010)
  38. Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 3, 101–105 (2008). (10.1038/nnano.2007.451) / Nat. Nanotech. by D Li (2008)
Dates
Type When
Created 11 years, 4 months ago (April 28, 2014, 6:09 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:56 p.m.)
Indexed 4 hours, 5 minutes ago (Aug. 29, 2025, 6:23 a.m.)
Issued 11 years, 4 months ago (April 28, 2014)
Published 11 years, 4 months ago (April 28, 2014)
Published Online 11 years, 4 months ago (April 28, 2014)
Funders 0

None

@article{Zheng_2014, title={Hydrogen evolution by a metal-free electrocatalyst}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4783}, DOI={10.1038/ncomms4783}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Zheng, Yao and Jiao, Yan and Zhu, Yihan and Li, Lu Hua and Han, Yu and Chen, Ying and Du, Aijun and Jaroniec, Mietek and Qiao, Shi Zhang}, year={2014}, month=apr }