Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
38
Referenced
2,053
-
Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2007).
(
10.1073/pnas.0603395103
) / Proc. Natl Acad. Sci. USA by NS Lewis (2007) -
Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).
(
10.1126/science.1103197
) / Science by JA Turner (2004) -
Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).
(
10.1021/cr1002326
) / Chem. Rev. by MG Walter (2010) -
Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta. 47, 3571–3594 (2002).
(
10.1016/S0013-4686(02)00329-8
) / Electrochim. Acta. by BE Conway (2002) -
Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).
(
10.1126/science.1211934
) / Science by R Subbaraman (2011) -
Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).
(
10.1126/science.1179773
) / Science by A Le Goff (2009) -
Zhuo, J. et al. Salts of C60(OH)8 electrodeposited onto a glassy carbon electrode: surprising catalytic performance in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 52, 10867–10870 (2013).
(
10.1002/anie.201305328
) / Angew. Chem. Int. Ed. by J Zhuo (2013) -
Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).
(
10.1021/cr100246c
) / Chem. Rev. by TR Cook (2010) -
Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011).
(
10.1002/anie.201007987
) / Angew. Chem. Int. Ed. by V Artero (2011) -
DuBois, M. R. & DuBois, D. L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 38, 62–72 (2009).
(
10.1039/B801197B
) / Chem. Soc. Rev. by MR DuBois (2009) -
Cobo, S. et al. A Janus cobalt-based catalytic material for electro-splitting of water. Nat. Mater. 11, 802–807 (2012).
(
10.1038/nmat3385
) / Nat. Mater. by S Cobo (2012) -
Du, P. & Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021 (2012).
(
10.1039/c2ee03250c
) / Energy Environ. Sci. by P Du (2012) -
Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013).
(
10.1021/ja403440e
) / J. Am. Chem. Soc. by EJ Popczun (2013) -
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).
(
10.1126/science.1141483
) / Science by TF Jaramillo (2007) -
Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).
(
10.1038/nmat3439
) / Nat. Mater. by J Kibsgaard (2012) -
Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).
(
10.1038/nmat3700
) / Nat. Mater. by D Voiry (2013) -
Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).
(
10.1038/nmat3673
) / Nat. Mater. by S Najmaei (2013) -
Laursen, A. B., Kegnæs, S., Dahla, S. & Chorkendorff, I. Molybdenum sulfides–efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577–5591 (2012).
(
10.1039/c2ee02618j
) / Energy Environ. Sci. by AB Laursen (2012) -
Merki, D. & Hu, X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011).
(
10.1039/c1ee01970h
) / Energy Environ. Sci. by D Merki (2011) -
Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).
(
10.1126/science.1168049
) / Science by K Gong (2009) -
Mirzakulova, E. et al. Electrode-assisted catalytic water oxidation by a flavin derivative. Nat. Chem. 4, 794–801 (2012).
(
10.1038/nchem.1439
) / Nat. Chem. by E Mirzakulova (2012) -
Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S. & Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4, 2390 (2013).
(
10.1038/ncomms3390
) / Nat. Commun. by Y Zhao (2013) -
Zheng, Y. et al. Nanoporous graphitic-C3N4@Carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 133, 20116–20119 (2011).
(
10.1021/ja209206c
) / J. Am. Chem. Soc. by Y Zheng (2011) -
Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).
(
10.1038/nmat2317
) / Nat. Mater. by X Wang (2009) -
Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008).
(
10.1039/b800274f
) / J. Mater. Chem. by A Thomas (2008) -
Suenaga, K. & Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010).
(
10.1038/nature09664
) / Nature by K Suenaga (2010) -
Muller, D. A., Tzou, Y., Raj, R. & Silcox, J. Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution. Nature 366, 725–727 (1993).
(
10.1038/366725a0
) / Nature by DA Muller (1993) -
Rosenberg, R. A., Love, P. J. & Rehn, V. Polarization-dependent C(K) near-edge x-ray-absorption fine structure of graphite. Phys. Rev. B 33, 4034–4037 (1985).
(
10.1103/PhysRevB.33.4034
) / Phys. Rev. B by RA Rosenberg (1985) -
Sheng, Z. et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011).
(
10.1021/nn103584t
) / ACS Nano by Z Sheng (2011) -
Chen, Z. et al. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011).
(
10.1021/nl2020476
) / Nano Lett. by Z Chen (2011) -
Chen, W. et al. Hydrogen-evolution catalysts based on non-noble metal nickel molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).
(
10.1002/anie.201200699
) / Angew. Chem. Int. Ed. by W Chen (2012) -
Merki, D., Vrubel, H., Rovelli, L., Fierro, S. & Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012).
(
10.1039/c2sc20539d
) / Chem. Sci. by D Merki (2012) -
Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).
(
10.1021/ja201269b
) / J. Am. Chem. Soc. by Y Li (2011) -
Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).
(
10.1038/nchem.121
) / Nat. Chem. by JK Nørskov (2009) -
Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).
(
10.1149/1.1856988
) / J. Electrochem. Soc. by JK Nørskov (2005) -
Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).
(
10.1038/nmat1752
) / Nat. Mater. by J Greeley (2006) -
Skulason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).
(
10.1021/jp1048887
) / J. Phys. Chem. C by E Skulason (2010) -
Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 3, 101–105 (2008).
(
10.1038/nnano.2007.451
) / Nat. Nanotech. by D Li (2008)
Dates
Type | When |
---|---|
Created | 11 years, 4 months ago (April 28, 2014, 6:09 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 10:56 p.m.) |
Indexed | 4 hours, 5 minutes ago (Aug. 29, 2025, 6:23 a.m.) |
Issued | 11 years, 4 months ago (April 28, 2014) |
Published | 11 years, 4 months ago (April 28, 2014) |
Published Online | 11 years, 4 months ago (April 28, 2014) |
@article{Zheng_2014, title={Hydrogen evolution by a metal-free electrocatalyst}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4783}, DOI={10.1038/ncomms4783}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Zheng, Yao and Jiao, Yan and Zhu, Yihan and Li, Lu Hua and Han, Yu and Chen, Ying and Du, Aijun and Jaroniec, Mietek and Qiao, Shi Zhang}, year={2014}, month=apr }