Bibliography
Xu, X., Pereira, L. F. C., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., Tinh Bui, C., Xie, R., Thong, J. T. L., Hong, B. H., Loh, K. P., Donadio, D., Li, B., & Ãzyilmaz, B. (2014). Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 5(1).
Authors
15
- Xiangfan Xu (first)
- Luiz F. C. Pereira (additional)
- Yu Wang (additional)
- Jing Wu (additional)
- Kaiwen Zhang (additional)
- Xiangming Zhao (additional)
- Sukang Bae (additional)
- Cong Tinh Bui (additional)
- Rongguo Xie (additional)
- John T. L. Thong (additional)
- Byung Hee Hong (additional)
- Kian Ping Loh (additional)
- Davide Donadio (additional)
- Baowen Li (additional)
- Barbaros Özyilmaz (additional)
References
48
Referenced
800
-
Li, B. & Wang, J. Anomalous heat conduction and anomalous diffusion in one-dimensional systems. Phys. Rev. Lett. 91, 044301 (2003).
(
10.1103/PhysRevLett.91.044301
) / Phys. Rev. Lett. by B Li (2003) -
Narayan, O. & Ramaswamy, S. Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002).
(
10.1103/PhysRevLett.89.200601
) / Phys. Rev. Lett. by O Narayan (2002) -
Dhar, A. Heat transport in low-dimensional systems. Adv. Phys. 57, 457–537 (2008).
(
10.1080/00018730802538522
) / Adv. Phys. by A Dhar (2008) -
Prosen, T. & Campbell, D. K. Momentum conservation implies anomalous energy transport in 1D classical lattices. Phys. Rev. Lett. 84, 2857 (2000).
(
10.1103/PhysRevLett.84.2857
) / Phys. Rev. Lett. by T Prosen (2000) -
Liu, S., Hänggi, P., Li, N., Ren, J. & Li, B. Anomalous heat diffusion. Phys. Rev. Lett. 112, 040601 (2014).
(
10.1103/PhysRevLett.112.040601
) / Phys. Rev. Lett. by S Liu (2014) -
Yang, N., Zhang, G. & Li, B. Violation of Fuourier's law and anomalous heat diffusion in silicon nanowires. Nano Today 5, 85–90 (2010).
(
10.1016/j.nantod.2010.02.002
) / Nano Today by N Yang (2010) -
Henry, A. & Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008).
(
10.1103/PhysRevLett.101.235502
) / Phys. Rev. Lett. by A Henry (2008) -
Liu, J. & Yang, R. Length-dependent thermal conductivity of single extended polymer chains. Phys. Rev. B 86, 104307 (2012).
(
10.1103/PhysRevB.86.104307
) / Phys. Rev. B by J Liu (2012) -
Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fourier's law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008).
(
10.1103/PhysRevLett.101.075903
) / Phys. Rev. Lett. by CW Chang (2008) -
Yang, L., Grassberger, P. & Hu, B. Dimensional crossover of heat conduction in low dimensions. Phys. Rev. E 74, 062101 (2006).
(
10.1103/PhysRevE.74.062101
) / Phys. Rev. E by L Yang (2006) -
Lippi, A. & Livi, R. Heat conduction in two-dimensional nonlinear lattices. J. Stat. Phys. 100, 1147–1172 (2000).
(
10.1023/A:1018721525900
) / J. Stat. Phys. by A Lippi (2000) -
Klemens, P. G. Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 22, 265–275 (2001).
(
10.1023/A:1006776107140
) / Int. J. Thermophys. by PG Klemens (2001) -
Wang, L., Hu, B. & Li, B. Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. Phys. Rev. E 86, 040101(R) (2012).
(
10.1103/PhysRevE.86.040101
) / Phys. Rev. E by L Wang (2012) -
Evans, W. J., Hu, L. & Keblinski, P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96, 203112 (2010).
(
10.1063/1.3435465
) / Appl. Phys. Lett. by WJ Evans (2010) -
Singh, D., Murthy, J. & Fisher, T. On the accuracy of classical and long wavelength approximations for phonon transport in graphene. J. Appl. Phys. 110, 113510 (2011).
(
10.1063/1.3665226
) / J. Appl. Phys. by D Singh (2011) -
Bonini, N., Garg, J. & Marzari, N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012).
(
10.1021/nl202694m
) / Nano Lett. by N Bonini (2012) -
Pereira, L. F. C. & Donadio, D. Divergence of the thermal conductivity in uniaxially strained graphene. Phys. Rev. B 87, 125424 (2013).
(
10.1103/PhysRevB.87.125424
) / Phys. Rev. B by LFC Pereira (2013) -
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
(
10.1038/nature04233
) / Nature by KS Novoselov (2005) -
Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).
(
10.1038/nature04235
) / Nature by YB Zhang (2005) -
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
(
10.1021/nl0731872
) / Nano Lett. by AA Balandin (2008) -
Cai, W. et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645–1651 (2010).
(
10.1021/nl9041966
) / Nano Lett. by W Cai (2010) -
Pettes, M., Jo, I., Yao, Z. & Shi, L. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 11, 1195–1200 (2011).
(
10.1021/nl104156y
) / Nano Lett. by M Pettes (2011) - Xu, X. et al. Phonon transport in suspended single layer graphene. Preprint at ‹http://arXiv.org/abs/1012.2937› (2010).
-
Wang, Z. et al. Thermal transport in suspended and supported few-layer graphene. Nano Lett. 11, 113–118 (2011).
(
10.1021/nl102923q
) / Nano Lett. by Z Wang (2011) -
Wang, J., Zhu, L., Chen, J., Li, B. & Thong, J. T. L. Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition. Adv. Mater. 25, 6884–6888 (2013).
(
10.1002/adma.201303362
) / Adv. Mater. by J Wang (2013) -
Chen, S. et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5, 321–328 (2011).
(
10.1021/nn102915x
) / ACS Nano by S Chen (2011) -
Faugeras, C. et al. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 4, 1889–1892 (2010).
(
10.1021/nn9016229
) / ACS Nano by C Faugeras (2010) -
Ghosh, S. et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).
(
10.1063/1.2907977
) / Appl. Phys. Lett. by S Ghosh (2008) -
Nika, D. L., Ghosh, S., Pokatilov, E. P. & Balandin, A. A. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl. Phys. Lett. 94, 203103 (2009).
(
10.1063/1.3136860
) / Appl. Phys. Lett. by DL Nika (2009) -
Jang, W., Chen, Z., Bao, W., Lau, C. & Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10, 3909–3913 (2010).
(
10.1021/nl101613u
) / Nano Lett. by W Jang (2010) -
Chen, S. et al. Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203–207 (2012).
(
10.1038/nmat3207
) / Nat. Mater. by S Chen (2012) -
Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).
(
10.1038/nmat2753
) / Nat. Mater. by S Ghosh (2010) -
Lee, J.-U., Yoon, D., Kim, H., Lee, S. W. & Cheong, H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 83, 081419 (2011).
(
10.1103/PhysRevB.83.081419
) / Phys. Rev. B by J-U Lee (2011) -
Bae, M. H. et al. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4, 1734 (2013).
(
10.1038/ncomms2755
) / Nat. Commun. by MH Bae (2013) -
Chen, J., Zhang, G. & Li, B. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 5, 532–536 (2013).
(
10.1039/C2NR32949B
) / Nanoscale by J Chen (2013) -
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).
(
10.1038/nnano.2010.132
) / Nat. Nanotechnol. by S Bae (2010) -
Wang, Y. et al. Electrochemical delamination of CVD grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2012).
(
10.1021/nn203700w
) / ACS Nano by Y Wang (2012) -
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
(
10.1126/science.1171245
) / Science by X Li (2009) -
Mingo, N. & Broido, D. A. Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95, 096105 (2005).
(
10.1103/PhysRevLett.95.096105
) / Phys. Rev. Lett. by N Mingo (2005) -
Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082 (1997).
(
10.1063/1.473271
) / J. Chem. Phys. by F Müller-Plathe (1997) -
Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010).
(
10.1103/PhysRevB.82.115427
) / Phys. Rev. B by L Lindsay (2010) -
Jund, P. & Jullien, R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys. Rev. B 59, 13707 (1999).
(
10.1103/PhysRevB.59.13707
) / Phys. Rev. B by P Jund (1999) -
Park, M., Lee, S. C. & Kim, Y. S. Length-dependent lattice thermal conductivity of graphene and its macroscopic limit. J. Appl. Phys. 114, 053506 (2013).
(
10.1063/1.4817175
) / J. Appl. Phys. by M Park (2013) -
Nika, D., Askerov, A. & Balandin, A. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 12, 3238–3244 (2012).
(
10.1021/nl301230g
) / Nano Lett. by D Nika (2012) -
Lindsay, L. & Broido, D. A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010).
(
10.1103/PhysRevB.81.205441
) / Phys. Rev. B by L Lindsay (2010) -
Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003).
(
10.1115/1.1597619
) / J. Heat Transfer by L Shi (2003) -
Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).
(
10.1103/PhysRevLett.87.215502
) / Phys. Rev. Lett. by P Kim (2001) -
Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012).
(
10.1038/nmat3303
) / Nat. Mater. by MD Losego (2012)
Dates
Type | When |
---|---|
Created | 11 years, 4 months ago (April 16, 2014, 8:17 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 10:46 p.m.) |
Indexed | 2 days, 1 hour ago (Aug. 19, 2025, 5:59 a.m.) |
Issued | 11 years, 4 months ago (April 16, 2014) |
Published | 11 years, 4 months ago (April 16, 2014) |
Published Online | 11 years, 4 months ago (April 16, 2014) |
@article{Xu_2014, title={Length-dependent thermal conductivity in suspended single-layer graphene}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4689}, DOI={10.1038/ncomms4689}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Xu, Xiangfan and Pereira, Luiz F. C. and Wang, Yu and Wu, Jing and Zhang, Kaiwen and Zhao, Xiangming and Bae, Sukang and Tinh Bui, Cong and Xie, Rongguo and Thong, John T. L. and Hong, Byung Hee and Loh, Kian Ping and Donadio, Davide and Li, Baowen and Özyilmaz, Barbaros}, year={2014}, month=apr }