Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Kitagawa, T., Ishii, K., Takeda, K., & Matsumoto, T. (2014). The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin. Nature Communications, 5(1).

Authors 4
  1. Teppei Kitagawa (first)
  2. Kojiro Ishii (additional)
  3. Kojiro Takeda (additional)
  4. Tomohiro Matsumoto (additional)
References 63 Referenced 21
  1. Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3, 730–739 (2001). (10.1038/35087045) / Nat. Cell Biol. by MD Blower (2001)
  2. Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999). (10.1038/44062) / Nature by BJ Buchwitz (1999)
  3. Collins, K. A., Castillo, A. R., Tatsutani, S. Y. & Biggins, S. De novo kinetochore assembly requires the centromeric histone H3 variant. Mol. Biol. Cell 16, 5649–5660 (2005). (10.1091/mbc.e05-08-0771) / Mol. Biol. Cell by KA Collins (2005)
  4. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000). (10.1073/pnas.97.3.1148) / Proc. Natl Acad. Sci. USA by EV Howman (2000)
  5. Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000). (10.1126/science.288.5474.2215) / Science by K Takahashi (2000)
  6. Sullivan, L. L., Boivin, C. D., Mravinac, B., Song, I. Y. & Sullivan, B. A. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res. 19, 457–470 (2011). (10.1007/s10577-011-9208-5) / Chromosome Res. by LL Sullivan (2011)
  7. Melters, D. P., Paliulis, L. V., Korf, I. F. & Chan, S. W. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res. 20, 579–593 (2012). (10.1007/s10577-012-9292-1) / Chromosome Res. by DP Melters (2012)
  8. Hill, A. & Bloom, K. Acquisition and processing of a conditional dicentric chromosome in Saccharomyces cerevisiae. Mol. Cell Biol. 9, 1368–1370 (1989). (10.1128/MCB.9.3.1368) / Mol. Cell Biol. by A Hill (1989)
  9. Thrower, D. A. & Bloom, K. Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast. Mol. Biol. Cell 12, 2800–2812 (2001). (10.1091/mbc.12.9.2800) / Mol. Biol. Cell by DA Thrower (2001)
  10. Thrower, D. A., Stemple, J., Yeh, E. & Bloom, K. Nuclear oscillations and nuclear filament formation accompany single-strand annealing repair of a dicentric chromosome in Saccharomyces cerevisiae. J. Cell Sci. 116, (Pt 3): 561–569 (2003). (10.1242/jcs.00251) / J. Cell Sci. by DA Thrower (2003)
  11. Sato, H., Masuda, F., Takayama, Y., Takahashi, K. & Saitoh, S. Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr. Biol. 22, 658–667 (2012). (10.1016/j.cub.2012.02.062) / Curr. Biol. by H Sato (2012)
  12. Moreno-Moreno, O., Torras-Llort, M. & Azorin, F. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res. 34, 6247–6255 (2006). (10.1093/nar/gkl902) / Nucleic Acids Res. by O Moreno-Moreno (2006)
  13. Collins, K. A., Furuyama, S. & Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14, 1968–1972 (2004). (10.1016/j.cub.2004.10.024) / Curr. Biol. by KA Collins (2004)
  14. Camahort, R. et al. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell 35, 794–805 (2009). (10.1016/j.molcel.2009.07.022) / Mol. Cell by R Camahort (2009)
  15. Heun, P. et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10, 303–315 (2006). (10.1016/j.devcel.2006.01.014) / Dev. Cell by P Heun (2006)
  16. Tomonaga, T. et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63, 3511–3516 (2003). / Cancer Res. by T Tomonaga (2003)
  17. Zeitlin, S. G. et al. Double-strand DNA breaks recruit the centromeric histone CENP-A. Proc. Natl Acad. Sci. USA 106, 15762–15767 (2009). (10.1073/pnas.0908233106) / Proc. Natl Acad. Sci. USA by SG Zeitlin (2009)
  18. Williams, B. C., Murphy, T. D., Goldberg, M. L. & Karpen, G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat. Genet. 18, 30–37 (1998). (10.1038/ng0198-30) / Nat. Genet. by BC Williams (1998)
  19. Ishii, K. et al. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321, 1088–1091 (2008). (10.1126/science.1158699) / Science by K Ishii (2008)
  20. Kalitsis, P. & Choo, K. H. The evolutionary life cycle of the resilient centromere. Chromosoma 121, 327–340 (2012). (10.1007/s00412-012-0369-6) / Chromosoma by P Kalitsis (2012)
  21. Mendiburo, M. J., Padeken, J., Fulop, S., Schepers, A. & Heun, P. Drosophila CENH3 is sufficient for centromere formation. Science 334, 686–690 (2011). (10.1126/science.1206880) / Science by MJ Mendiburo (2011)
  22. Morris, C. A. & Moazed, D. Centromere assembly and propagation. Cell 128, 647–650 (2007). (10.1016/j.cell.2007.02.002) / Cell by CA Morris (2007)
  23. Allshire, R. C. & Karpen, G. H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9, 923–937 (2008). (10.1038/nrg2466) / Nat. Rev. Genet. by RC Allshire (2008)
  24. Black, B. E. & Cleveland, D. W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144, 471–479 (2011). (10.1016/j.cell.2011.02.002) / Cell by BE Black (2011)
  25. Funabiki, H., Hagan, I., Uzawa, S. & Yanagida, M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol. 121, 961–976 (1993). (10.1083/jcb.121.5.961) / J. Cell Biol. by H Funabiki (1993)
  26. Takahashi, K. et al. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell. 3, 819–835 (1992). (10.1091/mbc.3.7.819) / Mol. Biol. Cell. by K Takahashi (1992)
  27. Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000). (10.1101/gad.14.7.783) / Genes Dev. by JF Partridge (2000)
  28. Tomko, R. J. Jr & Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82, 415–445 (2013). (10.1146/annurev-biochem-060410-150257) / Annu. Rev. Biochem. by RJ Tomko Jr (2013)
  29. Hanna, J. & Finley, D. A proteasome for all occasions. FEBS Lett. 581, 2854–2861 (2007). (10.1016/j.febslet.2007.03.053) / FEBS Lett. by J Hanna (2007)
  30. Castillo, A. G. et al. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4. PLoS Genet. 3, e121 (2007). (10.1371/journal.pgen.0030121) / PLoS Genet. by AG Castillo (2007)
  31. Javerzat, J. P. et al. Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation. Mol. Cell. Biol. 19, 5155–5165 (1999). (10.1128/MCB.19.7.5155) / Mol. Cell. Biol. by JP Javerzat (1999)
  32. Ekwall, K. et al. The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269, 1429–1431 (1995). (10.1126/science.7660126) / Science by K Ekwall (1995)
  33. Gillette, T. G. et al. Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J. 25, 2529–2538 (2006). / EMBO J. by TG Gillette (2006)
  34. Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S. A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296, 548–550 (2002). (10.1126/science.1069490) / Science by F Gonzalez (2002)
  35. Lassot, I. et al. The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Mol. Cell 25, 369–383 (2007). (10.1016/j.molcel.2006.12.020) / Mol. Cell by I Lassot (2007)
  36. Ban, Y., Ho, C. W., Lin, R. K., Lyu, Y. L. & Liu, L. F. Activation of a novel ubiquitin-independent proteasome pathway when RNA polymerase II encounters a protein roadblock. Mol. Cell. Biol. 33, 4008–4016 (2013). (10.1128/MCB.00403-13) / Mol. Cell. Biol. by Y Ban (2013)
  37. Hofmann, L. et al. A nonproteolytic proteasome activity controls organelle fission in yeast. J. Cell Sci. 122, (Pt 20): 3673–3683 (2009). (10.1242/jcs.050229) / J. Cell Sci. by L Hofmann (2009)
  38. Sun, L., Johnston, S. A. & Kodadek, T. Physical association of the APIS complex and general transcription factors. Biochem. Biophys. Res. Commun. 296, 991–999 (2002). (10.1016/S0006-291X(02)02026-0) / Biochem. Biophys. Res. Commun. by L Sun (2002)
  39. Sikder, D., Johnston, S. A. & Kodadek, T. Widespread, but non-identical, association of proteasomal 19 and 20 S proteins with yeast chromatin. J. Biol. Chem. 281, 27346–27355 (2006). (10.1074/jbc.M604706200) / J. Biol. Chem. by D Sikder (2006)
  40. Rasti, M. et al. Roles for APIS and the 20S proteasome in adenovirus E1A-dependent transcription. EMBO J. 25, 2710–2722 (2006). (10.1038/sj.emboj.7601169) / EMBO J. by M Rasti (2006)
  41. Ransom, M. et al. FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation. J. Biol. Chem. 284, 23461–23471 (2009). (10.1074/jbc.M109.019562) / J. Biol. Chem. by M Ransom (2009)
  42. Gordon, C., McGurk, G., Dillon, P., Rosen, C. & Hastie, N. D. Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit. Nature 366, 355–357 (1993). (10.1038/366355a0) / Nature by C Gordon (1993)
  43. Takeda, K. et al. Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast. Proc. Natl Acad. Sci. USA 107, 3540–3545 (2010). (10.1073/pnas.0911055107) / Proc. Natl Acad. Sci. USA by K Takeda (2010)
  44. Wilkinson, C. R. et al. Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J. 17, 6465–6476 (1998). (10.1093/emboj/17.22.6465) / EMBO J. by CR Wilkinson (1998)
  45. Tatebe, H. & Yanagida, M. Cut8, essential for anaphase, controls localization of 26S proteasome, facilitating destruction of cyclin and Cut2. Curr. Biol. 10, 1329–1338 (2000). (10.1016/S0960-9822(00)00773-9) / Curr. Biol. by H Tatebe (2000)
  46. Takeda, K. & Yanagida, M. Regulation of nuclear proteasome by Rhp6/Ubc2 through ubiquitination and destruction of the sensor and anchor Cut8. Cell 122, 393–405 (2005). (10.1016/j.cell.2005.05.023) / Cell by K Takeda (2005)
  47. Maresca, T. J. & Salmon, E. D. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J. Cell Sci. 123, (Pt 6): 825–835 (2010). (10.1242/jcs.064790) / J. Cell Sci. by TJ Maresca (2010)
  48. Lampson, M. A. & Cheeseman, I. M. Sensing centromere tension: aurora B and the regulation of kinetochore function. Trends Cell. Biol. 21, 133–140 (2011). (10.1016/j.tcb.2010.10.007) / Trends Cell. Biol. by MA Lampson (2011)
  49. Chaves, S., Baskerville, C., Yu, V. & Reed, S. I. Cks1, Cdk1, and the 19S proteasome collaborate to regulate gene induction-dependent nucleosome eviction in yeast. Mol. Cell. Biol. 30, 5284–5294 (2010). (10.1128/MCB.00952-10) / Mol. Cell. Biol. by S Chaves (2010)
  50. Anderson, H. E. et al. Silencing mediated by the Schizosaccharomyces pombe HIRA complex is dependent upon the Hpc2-like protein, Hip4. PLoS ONE 5, e13488 (2010). (10.1371/journal.pone.0013488) / PLoS ONE by HE Anderson (2010)
  51. Auld, K. L., Brown, C. R., Casolari, J. M., Komili, S. & Silver, P. A. Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates. Mol. Cell 21, 861–871 (2006). (10.1016/j.molcel.2006.02.020) / Mol. Cell by KL Auld (2006)
  52. Geng, F. & Tansey, W. P. Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin. Proc. Natl Acad. Sci. USA 109, 6060–6065 (2012). (10.1073/pnas.1200854109) / Proc. Natl Acad. Sci. USA by F Geng (2012)
  53. Furuyama, S. & Biggins, S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl Acad. Sci. USA (2007) 104, 14706–14711 (2007). (10.1073/pnas.0706985104) / Proc. Natl Acad. Sci. USA by S Furuyama (2007)
  54. Hewawasam, G. et al. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol. Cell 40, 444–454 (2010). (10.1016/j.molcel.2010.10.014) / Mol. Cell by G Hewawasam (2010)
  55. Ranjitkar, P. et al. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol. Cell 40, 455–464 (2010). (10.1016/j.molcel.2010.09.025) / Mol. Cell by P Ranjitkar (2010)
  56. Rocchi, M., Archidiacono, N., Schempp, W., Capozzi, O. & Stanyon, R. Centromere repositioning in mammals. Heredity (Edinb) 108, 59–67 (2012). (10.1038/hdy.2011.101) / Heredity (Edinb) by M Rocchi (2012)
  57. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991). (10.1016/0076-6879(91)94059-L) / Methods Enzymol. by S Moreno (1991)
  58. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998). (10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y) / Yeast by J Bahler (1998)
  59. Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218–233 (1995). (10.1101/gad.9.2.218) / Genes Dev. by RC Allshire (1995)
  60. Masumoto, H., Sugino, A. & Araki, H. Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol. 20, 2809–2817 (2000). (10.1128/MCB.20.8.2809-2817.2000) / Mol. Cell. Biol. by H Masumoto (2000)
  61. Kawashima, S. A. et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 21, 420–435 (2007). (10.1101/gad.1497307) / Genes Dev. by SA Kawashima (2007)
  62. Kurdistani, S. K. & Grunstein, M. In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray. Methods 31, 90–95 (2003). (10.1016/S1046-2023(03)00092-6) / Methods by SK Kurdistani (2003)
  63. Matsumoto, T. & Beach, D. Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell 66, 347–360 (1991). (10.1016/0092-8674(91)90624-8) / Cell by T Matsumoto (1991)
Dates
Type When
Created 11 years, 4 months ago (April 7, 2014, 9:55 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:53 p.m.)
Indexed 1 year, 2 months ago (July 1, 2024, 12:34 a.m.)
Issued 11 years, 4 months ago (April 7, 2014)
Published 11 years, 4 months ago (April 7, 2014)
Published Online 11 years, 4 months ago (April 7, 2014)
Funders 0

None

@article{Kitagawa_2014, title={The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4597}, DOI={10.1038/ncomms4597}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Kitagawa, Teppei and Ishii, Kojiro and Takeda, Kojiro and Matsumoto, Tomohiro}, year={2014}, month=apr }