Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Mo, R., Jiang, T., DiSanto, R., Tai, W., & Gu, Z. (2014). ATP-triggered anticancer drug delivery. Nature Communications, 5(1).

Authors 5
  1. Ran Mo (first)
  2. Tianyue Jiang (additional)
  3. Rocco DiSanto (additional)
  4. Wanyi Tai (additional)
  5. Zhen Gu (additional)
References 58 Referenced 619
  1. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007). (10.1038/nnano.2007.387) / Nat. Nanotechnol. by D Peer (2007)
  2. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010). (10.1038/nrd2591) / Nat. Rev. Drug Discov. by RA Petros (2010)
  3. Shi, J. J., Votruba, A. R., Farokhzad, O. C. & Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10, 3223–3230 (2010). (10.1021/nl102184c) / Nano Lett. by JJ Shi (2010)
  4. Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4, 128ra39 (2012). (10.1126/scitranslmed.3003651) / Sci. Transl. Med. by J Hrkach (2012)
  5. Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2, 750–763 (2002). (10.1038/nrc903) / Nat. Rev. Cancer by TM Allen (2002)
  6. Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 32, 962–990 (2007). (10.1016/j.progpolymsci.2007.05.009) / Prog. Polym. Sci. by N Rapoport (2007)
  7. Choi, S.-W., Zhang, Y. & Xia, Y. A temperature-sensitive drug release system based on phase-change materials. Angew. Chem. Int. Ed. Engl. 49, 7904–7908 (2010). (10.1002/anie.201004057) / Angew. Chem. Int. Ed. Engl. by S-W Choi (2010)
  8. Zhang, Y. et al. Chain-shattering polymeric therapeutics with on-demand drug-release capability. Angew. Chem. Int. Ed. Engl. 52, 6435–6439 (2013). (10.1002/anie.201300497) / Angew. Chem. Int. Ed. Engl. by Y Zhang (2013)
  9. Oliveira, H. et al. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release 169, 165–170 (2013). (10.1016/j.jconrel.2013.01.013) / J. Control. Release by H Oliveira (2013)
  10. Hernot, S. & Klibanov, A. L. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 60, 1153–1166 (2008). (10.1016/j.addr.2008.03.005) / Adv. Drug Deliv. Rev. by S Hernot (2008)
  11. Kwon, I. C., Bae, Y. H. & Kim, S. W. Electrically credible polymer gel for controlled release of drugs. Nature 354, 291–293 (1991). (10.1038/354291a0) / Nature by IC Kwon (1991)
  12. Ke, C. J. et al. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew. Chem. Int. Ed. Engl. 50, 8086–8089 (2011). (10.1002/anie.201102852) / Angew. Chem. Int. Ed. Engl. by CJ Ke (2011)
  13. Ong, W., Yang, Y., Cruciano, A. C. & McCarley, R. L. Redox-triggered contents release from liposomes. J. Am. Chem. Soc. 130, 14739–14744 (2008). (10.1021/ja8050469) / J. Am. Chem. Soc. by W Ong (2008)
  14. Biswas, A. et al. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS Nano 5, 1385–1394 (2011). (10.1021/nn1031005) / ACS Nano by A Biswas (2011)
  15. Gu, Z. et al. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 9, 4533–4538 (2009). (10.1021/nl902935b) / Nano Lett. by Z Gu (2009)
  16. Ravaine, V., Ancla, C. & Catargi, B. Chemically controlled closed-loop insulin delivery. J. Control. Release 132, 2–11 (2008). (10.1016/j.jconrel.2008.08.009) / J. Control. Release by V Ravaine (2008)
  17. Gu, Z. et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 7, 4194–4201 (2013). (10.1021/nn400630x) / ACS Nano by Z Gu (2013)
  18. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005). (10.1038/nrd1632) / Nat. Rev. Drug Discov. by VP Torchilin (2005)
  19. Motornov, M., Roiter, Y., Tokarev, I. & Minko, S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog. Polym. Sci. 35, 174–211 (2010). (10.1016/j.progpolymsci.2009.10.004) / Prog. Polym. Sci. by M Motornov (2010)
  20. Chow, E. K. & Ho, D. Cancer nanomedicine: from drug delivery to imaging. Sci. Transl. Med. 5, 216rv4 (2013). (10.1126/scitranslmed.3005872) / Sci. Transl. Med. by EK Chow (2013)
  21. Zhao, M. et al. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today 8, 11–20 (2013). (10.1016/j.nantod.2012.12.003) / Nano Today by M Zhao (2013)
  22. Knowles, J. R. Enzyme-catalyzed phosphoryl transfer-reactions. Annu. Rev. Biochem. 49, 877–919 (1980). (10.1146/annurev.bi.49.070180.004305) / Annu. Rev. Biochem. by JR Knowles (1980)
  23. Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994). (10.1007/BF00928361) / Mol. Cell. Biochem. by TW Traut (1994)
  24. Leist, M., Single, B., Castoldi, A. F., Kuhnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481–1486 (1997). (10.1084/jem.185.8.1481) / J. Exp. Med. by M Leist (1997)
  25. Gorman, M. W., Feigl, E. O. & Buffington, C. W. Human plasma ATP concentration. Clin. Chem. 53, 318–325 (2007). (10.1373/clinchem.2006.076364) / Clin. Chem. by MW Gorman (2007)
  26. Gribble, F. M. et al. A novel method for measurement of submembrane ATP concentration. J. Biol. Chem. 275, 30046–30049 (2000). (10.1074/jbc.M001010200) / J. Biol. Chem. by FM Gribble (2000)
  27. Naito, M. et al. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem. Int. Ed. Engl. 51, 10751–10755 (2012). (10.1002/anie.201203360) / Angew. Chem. Int. Ed. Engl. by M Naito (2012)
  28. Biswas, S. et al. Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nat. Chem. 5, 613–620 (2013). (10.1038/nchem.1681) / Nat. Chem. by S Biswas (2013)
  29. Liu, J. W. & Lu, Y. Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv. Mater. 18, 1667–1671 (2006). (10.1002/adma.200600525) / Adv. Mater. by JW Liu (2006)
  30. Zuo, X. L. et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc. 129, 1042–1043 (2007). (10.1021/ja067024b) / J. Am. Chem. Soc. by XL Zuo (2007)
  31. Pu, W. D., Zhang, L. & Huang, C. Z. Graphene oxide as a nano-platform for ATP detection based on aptamer chemistry. Anal. Methods 4, 1662–1666 (2012). (10.1039/c2ay25166c) / Anal. Methods by WD Pu (2012)
  32. Wu, C. et al. Engineering of switchable aptamer micelle flares for molecular imaging in living cells. ACS Nano 7, 5724–5731 (2013). (10.1021/nn402517v) / ACS Nano by C Wu (2013)
  33. Sorgi, F. L., Bhattacharya, S. & Huang, L. Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther. 4, 961–968 (1997). (10.1038/sj.gt.3300484) / Gene Ther. by FL Sorgi (1997)
  34. Gotte, M. & Yip, G. W. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 66, 10233–10237 (2006). (10.1158/0008-5472.CAN-06-1464) / Cancer Res. by M Gotte (2006)
  35. Stern, R. & Jedrzejas, M. J. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem. Rev. 106, 818–839 (2006). (10.1021/cr050247k) / Chem. Rev. by R Stern (2006)
  36. Bertrand, P. et al. Increased hyaluronidase levels in breast tumor metastases. Int. J. Cancer 73, 327–331 (1997). (10.1002/(SICI)1097-0215(19971104)73:3<327::AID-IJC4>3.0.CO;2-1) / Int. J. Cancer by P Bertrand (1997)
  37. Yan, M. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 5, 48–53 (2010). (10.1038/nnano.2009.341) / Nat. Nanotechnol. by M Yan (2010)
  38. Chaires, J. B., Herrera, J. E. & Waring, M. J. Preferential binding of daunomycin to 5'ATCG and 5'ATGC sequences revealed by footprinting titration experiments. Biochemistry 29, 6145–6153 (1990). (10.1021/bi00478a006) / Biochemistry by JB Chaires (1990)
  39. Kim, D., Jeong, Y. Y. & Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4, 3689–3696 (2010). (10.1021/nn901877h) / ACS Nano by D Kim (2010)
  40. Xiao, Z. Y. et al. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. Engl. 51, 11853–11857 (2012). (10.1002/anie.201204018) / Angew. Chem. Int. Ed. Engl. by ZY Xiao (2012)
  41. Brewer, L. R., Corzett, M. & Balhorn, R. Protamine-induced condensation and decondensation of the same DNA molecule. Science 286, 120–123 (1999). (10.1126/science.286.5437.120) / Science by LR Brewer (1999)
  42. Verrax, J., Dejeans, N., Sid, B., Glorieux, C. & Calderon, P. B. Intracellular ATP levels determine cell death fate of cancer cells exposed to both standard and redox chemotherapeutic agents. Biochem. Pharmacol. 82, 1540–1548 (2011). (10.1016/j.bcp.2011.07.102) / Biochem. Pharmacol. by J Verrax (2011)
  43. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009). (10.1146/annurev.biochem.78.081307.110540) / Annu. Rev. Biochem. by GJ Doherty (2009)
  44. Mo, R. et al. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv. Mater. 24, 3659–3665 (2012). (10.1002/adma.201201498) / Adv. Mater. by R Mo (2012)
  45. Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutellingsperger, C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J. Immunol. Methods 184, 39–51 (1995). (10.1016/0022-1759(95)00072-I) / J. Immunol. Methods by I Vermes (1995)
  46. Nicoletti, I., Migliorati, G., Pagliacci, M., Grignani, F. & Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271–279 (1991). (10.1016/0022-1759(91)90198-O) / J. Immunol. Methods by I Nicoletti (1991)
  47. Van Engeland, M., Nieland, L. J., Ramaekers, F. C., Schutte, B. & Reutelingsperger, C. P. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31, 1–9 (1998). (10.1002/(SICI)1097-0320(19980101)31:1<1::AID-CYTO1>3.0.CO;2-R) / Cytometry by M Van Engeland (1998)
  48. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998). (10.1038/34112) / Nature by M Enari (1998)
  49. Loo, D. T. In situ detection of apoptosis by the TUNEL assay: an overview of techniques. Methods Mol. Biol. 682, 3–13 (2011). (10.1007/978-1-60327-409-8_1) / Methods Mol. Biol. by DT Loo (2011)
  50. Takemura, G. & Fujiwara, H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 49, 330–352 (2007). (10.1016/j.pcad.2006.10.002) / Prog. Cardiovasc. Dis. by G Takemura (2007)
  51. Nicolaou, K. C. & Dai, W. M. Chemistry and biology of the enediyne anticancer antibiotics. Angew. Chem. Int. Ed. Engl. 30, 1387–1416 (1991). (10.1002/anie.199113873) / Angew. Chem. Int. Ed. Engl. by KC Nicolaou (1991)
  52. Smith, C. K., Davies, G. J., Dodson, E. J. & Moore, M. H. DNA-nogalamycin interactions: the crystal-structure of D(TGATCA) complexed with nogalamycin. Biochemistry 34, 415–425 (1995). (10.1021/bi00002a005) / Biochemistry by CK Smith (1995)
  53. Zheng, J. et al. A spherical nucleic acid platform based on self-assembled DNA biopolymer for high-performance cancer therapy. ACS Nano 7, 6545–6554 (2013). (10.1021/nn402344v) / ACS Nano by J Zheng (2013)
  54. Verma, D. D., Levchenko, T. S., Bernstein, E. A. & Torchilin, V. P. ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J. Control. Release 108, 460–471 (2005). (10.1016/j.jconrel.2005.08.029) / J. Control. Release by DD Verma (2005)
  55. Levchenko, T. S., Hartner, W. C., Verma, D. D., Bernstein, E. A. & Torchilin, V. P. ATP-loaded liposomes for targeted treatment in models of myocardial ischemia. Methods Mol. Biol. 605, 361–375 (2010). (10.1007/978-1-60327-360-2_25) / Methods Mol. Biol. by TS Levchenko (2010)
  56. Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011). (10.1038/nrd3504) / Nat. Rev. Drug Discov. by MG Vander Heiden (2011)
  57. Hamanaka, R. B. & Chandel, N. S. Targeting glucose metabolism for cancer therapy. J. Exp. Med. 209, 211–215 (2012). (10.1084/jem.20120162) / J. Exp. Med. by RB Hamanaka (2012)
  58. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011). (10.1038/nrc3064) / Nat. Rev. Cancer by WR Wilson (2011)
Dates
Type When
Created 11 years, 5 months ago (March 11, 2014, 12:02 p.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:52 p.m.)
Indexed 3 days, 13 hours ago (Aug. 21, 2025, 1:24 p.m.)
Issued 11 years, 5 months ago (March 11, 2014)
Published 11 years, 5 months ago (March 11, 2014)
Published Online 11 years, 5 months ago (March 11, 2014)
Funders 0

None

@article{Mo_2014, title={ATP-triggered anticancer drug delivery}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4364}, DOI={10.1038/ncomms4364}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Mo, Ran and Jiang, Tianyue and DiSanto, Rocco and Tai, Wanyi and Gu, Zhen}, year={2014}, month=mar }