Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Lin, F., Nordlund, D., Weng, T.-C., Zhu, Y., Ban, C., Richards, R. M., & Xin, H. L. (2014). Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nature Communications, 5(1).

Authors 7
  1. Feng Lin (first)
  2. Dennis Nordlund (additional)
  3. Tsu-Chien Weng (additional)
  4. Ye Zhu (additional)
  5. Chunmei Ban (additional)
  6. Ryan M. Richards (additional)
  7. Huolin L. Xin (additional)
References 55 Referenced 169
  1. Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002). (10.1038/416811a) / Nature by VJ Anderson (2002)
  2. Armstrong, A. R., Lyness, C., Panchmatia, P. M., Islam, M. S. & Bruce, P. G. The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2 . Nat. Mater. 10, 223–229 (2011). (10.1038/nmat2967) / Nat. Mater. by AR Armstrong (2011)
  3. Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4 . Nat. Mater. 10, 587–590 (2011). (10.1038/nmat3065) / Nat. Mater. by R Malik (2011)
  4. Wang, D. et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013). (10.1038/nmat3458) / Nat. Mater. by D Wang (2013)
  5. Wang, D. et al. Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 12, 5230–5238 (2012). (10.1021/nl302404g) / Nano Lett. by D Wang (2012)
  6. Tang, M., Carter, W. C. & Chiang, Y.-M. Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines. Annu. Rev. Mater. Res. 40, 501–529 (2010). (10.1146/annurev-matsci-070909-104435) / Annu. Rev. Mater. Res. by M Tang (2010)
  7. Wang, F. et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011). (10.1021/ja206268a) / J. Am. Chem. Soc. by F Wang (2011)
  8. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010). (10.1126/science.1195628) / Science by JY Huang (2010)
  9. Levi, M. D. et al. Collective phase transition dynamics in microarray composite Lix FePO4 electrodes tracked by in situ electrochemical quartz crystal admittance. J. Phys. Chem. C 117, 15505–15514 (2013). (10.1021/jp403653d) / J. Phys. Chem. C by MD Levi (2013)
  10. Chueh, W. C. et al. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett. 13, 866–872 (2013). (10.1021/nl3031899) / Nano Lett. by WC Chueh (2013)
  11. Wang, F. et al. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 3, 1201 (2012). (10.1038/ncomms2185) / Nat. Commun. by F Wang (2012)
  12. Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. & Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008). (10.1038/nmat2230) / Nat. Mater. by C Delmas (2008)
  13. Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013). (10.1038/ncomms2878) / Nat. Commun. by Y Sun (2013)
  14. Li, C., Gu, L., Tsukimoto, S., van Aken, P. A. & Maier, J. Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv. Mater. 22, 3650–3654 (2010). (10.1002/adma.201000535) / Adv. Mater. by C Li (2010)
  15. Oumellal, Y., Rougier, A., Nazri, G. A., Tarascon, J.-M. & Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 7, 916–921 (2008). (10.1038/nmat2288) / Nat. Mater. by Y Oumellal (2008)
  16. Li, H., Liu, X., Zhai, T., Li, D. & Zhou, H. Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv. Energy Mater. 3, 428–432 (2013). (10.1002/aenm.201200833) / Adv. Energy Mater. by H Li (2013)
  17. Lee, S.-H. et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 20, 3627–3632 (2008). (10.1002/adma.200800999) / Adv. Mater. by S-H Lee (2008)
  18. Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010). (10.1002/adma.201000717) / Adv. Mater. by J Cabana (2010)
  19. Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for li ion batteries. Chem. Rev. 113, 5364–5457 (2013). (10.1021/cr3001884) / Chem. Rev. by MV Reddy (2013)
  20. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  21. Ban, C. et al. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate li-ion anode. Adv. Mater. 22, E145–E149 (2010). (10.1002/adma.200904285) / Adv. Mater. by C Ban (2010)
  22. Balaya, P., Li, H., Kienle, L. & Maier, J. Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity. Adv. Funct. Mater. 13, 621–625 (2003). (10.1002/adfm.200304406) / Adv. Funct. Mater. by P Balaya (2003)
  23. Gao, J., Lowe, M. A. & Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 23, 3223–3227 (2011). (10.1021/cm201039w) / Chem. Mater. by J Gao (2011)
  24. Dupont, L. et al. Mesoporous Cr2O3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation. J. Power Sources 175, 502–509 (2008). (10.1016/j.jpowsour.2007.09.084) / J. Power Sources by L Dupont (2008)
  25. Zhou, G. et al. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012). (10.1021/nn300098m) / ACS Nano by G Zhou (2012)
  26. Varghese, B. et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 20, 3360–3367 (2008). (10.1021/cm703512k) / Chem. Mater. by B Varghese (2008)
  27. Liu, L. et al. Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J. Phys. Chem. C 114, 251–255 (2010). (10.1021/jp909014w) / J. Phys. Chem. C by L Liu (2010)
  28. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). (10.1039/c1ee01598b) / Energy Environ. Sci. by V Etacheri (2011)
  29. Harris, S. J. & Lu, P. Effects of inhomogeneities—nanoscale to mesoscale—on the durability of li-ion batteries. J. Phys. Chem. C 117, 6481–6492 (2013). (10.1021/jp311431z) / J. Phys. Chem. C by SJ Harris (2013)
  30. Borkiewicz, O. J., Chapman, K. W. & Chupas, P. J. Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays. Phys. Chem. Chem. Phys. 15, 8466–8469 (2013). (10.1039/c3cp50590a) / Phys. Chem. Chem. Phys. by OJ Borkiewicz (2013)
  31. Yu, Y. et al. Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. Nano Lett. 12, 4417–4423 (2012). (10.1021/nl203920s) / Nano Lett. by Y Yu (2012)
  32. Hu, J. et al. Preparation and surface activity of single-crystalline NiO(111) nanosheets with hexagonal holes: a semiconductor nanospanner. Adv. Mater. 20, 267–271 (2008). (10.1002/adma.200701389) / Adv. Mater. by J Hu (2008)
  33. Lin, F. et al. Origin of electrochromism in high-performing nanocomposite nickel oxide. ACS Appl. Mater. Interfaces 5, 3643–3649 (2013). (10.1021/am400105y) / ACS Appl. Mater. Interfaces by F Lin (2013)
  34. Lin, F. et al. Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. ACS Appl. Mater. Interfaces 5, 301–309 (2013). (10.1021/am302097b) / ACS Appl. Mater. Interfaces by F Lin (2013)
  35. Soriano, L. et al. The electronic structure of mesoscopic NiO particles. Chem. Phys. Lett. 208, 460–464 (1993). (10.1016/0009-2614(93)87173-Z) / Chem. Phys. Lett. by L Soriano (1993)
  36. Zhukovskii, Y. F., Balaya, P., Kotomin, E. A. & Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 96, 058302 (2006). (10.1103/PhysRevLett.96.058302) / Phys. Rev. Lett. by YF Zhukovskii (2006)
  37. Fransson, L., Eriksson, T., Edström, K., Gustafsson, T. & Thomas, J. Influence of carbon black and binder on Li-ion batteries. J. Power Sources 101, 1–9 (2001). (10.1016/S0378-7753(01)00481-5) / J. Power Sources by L Fransson (2001)
  38. Sahay, R. et al. High aspect ratio electrospun cuo nanofibers as anode material for lithium-ion batteries with superior cycleability. J. Phys. Chem. C 116, 18087–18092 (2012). (10.1021/jp3053949) / J. Phys. Chem. C by R Sahay (2012)
  39. Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013). (10.1038/nmat3784) / Nat. Mater. by Y-Y Hu (2013)
  40. Su, D., Ford, M. & Wang, G. Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. Sci. Rep. 2, 924 (2012). (10.1038/srep00924) / Sci. Rep. by D Su (2012)
  41. Qiao, R., Chuang, Y.-D., Yan, S. & Yang, W. Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS One 7, e49182 (2012). (10.1371/journal.pone.0049182) / PLoS One by R Qiao (2012)
  42. Garvie, L. A. J. & Graven, A. J. Use of electron-energy loss near-edge fine structure in the study of minerals. Am. Mineral. 79, 411–425 (1994). / Am. Mineral. by LAJ Garvie (1994)
  43. Wang, F. et al. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190–1197 (2011). (10.1021/nn1028168) / ACS Nano by F Wang (2011)
  44. Dollé, M., Grugeon, S., Beaudoin, B., Dupont, L. & Tarascon, J.-M. In situ TEM study of the interface carbon/electrolyte. J. Power Sources 97, 104–106 (2001). (10.1016/S0378-7753(01)00507-9) / J. Power Sources by M Dollé (2001)
  45. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). (10.1021/cr030203g) / Chem. Rev. by K Xu (2004)
  46. Lu, P. & Harris, S. J. Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011). (10.1016/j.elecom.2011.06.026) / Electrochem. Commun. by P Lu (2011)
  47. Shi, S. et al. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012). (10.1021/ja305366r) / J. Am. Chem. Soc. by S Shi (2012)
  48. Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in li ion batteries. Science 342, 716–720 (2013). (10.1126/science.1241882) / Science by M Ebner (2013)
  49. Shyam, B. et al. Structural and mechanistic revelations on an iron conversion reaction from pair distribution function analysis. Angew. Chem. Int. Ed. 51, 4852–4855 (2012). (10.1002/anie.201200244) / Angew. Chem. Int. Ed. by B Shyam (2012)
  50. Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). (10.1002/anie.200702505) / Angew. Chem. Int. Ed. by PG Bruce (2008)
  51. Liu, H., Wang, G., Liu, J., Qiao, S. & Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 21, 3046–3052 (2011). (10.1039/c0jm03132a) / J. Mater. Chem. by H Liu (2011)
  52. Chen, Q. & Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 12, 1102–1106 (2013). (10.1038/nmat3741) / Nat. Mater. by Q Chen (2013)
  53. Meirer, F. et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 18, 773–781 (2011). (10.1107/S0909049511019364) / J. Synchrotron Radiat. by F Meirer (2011)
  54. Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys 514Nelson Thornes (1992). (10.1007/978-1-4899-3051-4)
  55. Gregorczyk, K. E., Liu, Y., Sullivan, J. P. & Rubloff, G. W. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2 . ACS Nano 7, 6354–6360 (2013). (10.1021/nn402451s) / ACS Nano by KE Gregorczyk (2013)
Dates
Type When
Created 11 years, 5 months ago (Feb. 24, 2014, 5:01 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:53 p.m.)
Indexed 2 weeks ago (Aug. 6, 2025, 8:26 a.m.)
Issued 11 years, 5 months ago (Feb. 24, 2014)
Published 11 years, 5 months ago (Feb. 24, 2014)
Published Online 11 years, 5 months ago (Feb. 24, 2014)
Funders 0

None

@article{Lin_2014, title={Phase evolution for conversion reaction electrodes in lithium-ion batteries}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4358}, DOI={10.1038/ncomms4358}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Lin, Feng and Nordlund, Dennis and Weng, Tsu-Chien and Zhu, Ye and Ban, Chunmei and Richards, Ryan M. and Xin, Huolin L.}, year={2014}, month=feb }