Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
55
Referenced
169
-
Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).
(
10.1038/416811a
) / Nature by VJ Anderson (2002) -
Armstrong, A. R., Lyness, C., Panchmatia, P. M., Islam, M. S. & Bruce, P. G. The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2 . Nat. Mater. 10, 223–229 (2011).
(
10.1038/nmat2967
) / Nat. Mater. by AR Armstrong (2011) -
Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4 . Nat. Mater. 10, 587–590 (2011).
(
10.1038/nmat3065
) / Nat. Mater. by R Malik (2011) -
Wang, D. et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).
(
10.1038/nmat3458
) / Nat. Mater. by D Wang (2013) -
Wang, D. et al. Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 12, 5230–5238 (2012).
(
10.1021/nl302404g
) / Nano Lett. by D Wang (2012) -
Tang, M., Carter, W. C. & Chiang, Y.-M. Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines. Annu. Rev. Mater. Res. 40, 501–529 (2010).
(
10.1146/annurev-matsci-070909-104435
) / Annu. Rev. Mater. Res. by M Tang (2010) -
Wang, F. et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011).
(
10.1021/ja206268a
) / J. Am. Chem. Soc. by F Wang (2011) -
Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).
(
10.1126/science.1195628
) / Science by JY Huang (2010) -
Levi, M. D. et al. Collective phase transition dynamics in microarray composite Lix FePO4 electrodes tracked by in situ electrochemical quartz crystal admittance. J. Phys. Chem. C 117, 15505–15514 (2013).
(
10.1021/jp403653d
) / J. Phys. Chem. C by MD Levi (2013) -
Chueh, W. C. et al. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett. 13, 866–872 (2013).
(
10.1021/nl3031899
) / Nano Lett. by WC Chueh (2013) -
Wang, F. et al. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 3, 1201 (2012).
(
10.1038/ncomms2185
) / Nat. Commun. by F Wang (2012) -
Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. & Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008).
(
10.1038/nmat2230
) / Nat. Mater. by C Delmas (2008) -
Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013).
(
10.1038/ncomms2878
) / Nat. Commun. by Y Sun (2013) -
Li, C., Gu, L., Tsukimoto, S., van Aken, P. A. & Maier, J. Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv. Mater. 22, 3650–3654 (2010).
(
10.1002/adma.201000535
) / Adv. Mater. by C Li (2010) -
Oumellal, Y., Rougier, A., Nazri, G. A., Tarascon, J.-M. & Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 7, 916–921 (2008).
(
10.1038/nmat2288
) / Nat. Mater. by Y Oumellal (2008) -
Li, H., Liu, X., Zhai, T., Li, D. & Zhou, H. Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv. Energy Mater. 3, 428–432 (2013).
(
10.1002/aenm.201200833
) / Adv. Energy Mater. by H Li (2013) -
Lee, S.-H. et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 20, 3627–3632 (2008).
(
10.1002/adma.200800999
) / Adv. Mater. by S-H Lee (2008) -
Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).
(
10.1002/adma.201000717
) / Adv. Mater. by J Cabana (2010) -
Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for li ion batteries. Chem. Rev. 113, 5364–5457 (2013).
(
10.1021/cr3001884
) / Chem. Rev. by MV Reddy (2013) -
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).
(
10.1038/35035045
) / Nature by P Poizot (2000) -
Ban, C. et al. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate li-ion anode. Adv. Mater. 22, E145–E149 (2010).
(
10.1002/adma.200904285
) / Adv. Mater. by C Ban (2010) -
Balaya, P., Li, H., Kienle, L. & Maier, J. Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity. Adv. Funct. Mater. 13, 621–625 (2003).
(
10.1002/adfm.200304406
) / Adv. Funct. Mater. by P Balaya (2003) -
Gao, J., Lowe, M. A. & Abruña, H. D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 23, 3223–3227 (2011).
(
10.1021/cm201039w
) / Chem. Mater. by J Gao (2011) -
Dupont, L. et al. Mesoporous Cr2O3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation. J. Power Sources 175, 502–509 (2008).
(
10.1016/j.jpowsour.2007.09.084
) / J. Power Sources by L Dupont (2008) -
Zhou, G. et al. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012).
(
10.1021/nn300098m
) / ACS Nano by G Zhou (2012) -
Varghese, B. et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 20, 3360–3367 (2008).
(
10.1021/cm703512k
) / Chem. Mater. by B Varghese (2008) -
Liu, L. et al. Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J. Phys. Chem. C 114, 251–255 (2010).
(
10.1021/jp909014w
) / J. Phys. Chem. C by L Liu (2010) -
Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).
(
10.1039/c1ee01598b
) / Energy Environ. Sci. by V Etacheri (2011) -
Harris, S. J. & Lu, P. Effects of inhomogeneities—nanoscale to mesoscale—on the durability of li-ion batteries. J. Phys. Chem. C 117, 6481–6492 (2013).
(
10.1021/jp311431z
) / J. Phys. Chem. C by SJ Harris (2013) -
Borkiewicz, O. J., Chapman, K. W. & Chupas, P. J. Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays. Phys. Chem. Chem. Phys. 15, 8466–8469 (2013).
(
10.1039/c3cp50590a
) / Phys. Chem. Chem. Phys. by OJ Borkiewicz (2013) -
Yu, Y. et al. Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. Nano Lett. 12, 4417–4423 (2012).
(
10.1021/nl203920s
) / Nano Lett. by Y Yu (2012) -
Hu, J. et al. Preparation and surface activity of single-crystalline NiO(111) nanosheets with hexagonal holes: a semiconductor nanospanner. Adv. Mater. 20, 267–271 (2008).
(
10.1002/adma.200701389
) / Adv. Mater. by J Hu (2008) -
Lin, F. et al. Origin of electrochromism in high-performing nanocomposite nickel oxide. ACS Appl. Mater. Interfaces 5, 3643–3649 (2013).
(
10.1021/am400105y
) / ACS Appl. Mater. Interfaces by F Lin (2013) -
Lin, F. et al. Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. ACS Appl. Mater. Interfaces 5, 301–309 (2013).
(
10.1021/am302097b
) / ACS Appl. Mater. Interfaces by F Lin (2013) -
Soriano, L. et al. The electronic structure of mesoscopic NiO particles. Chem. Phys. Lett. 208, 460–464 (1993).
(
10.1016/0009-2614(93)87173-Z
) / Chem. Phys. Lett. by L Soriano (1993) -
Zhukovskii, Y. F., Balaya, P., Kotomin, E. A. & Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 96, 058302 (2006).
(
10.1103/PhysRevLett.96.058302
) / Phys. Rev. Lett. by YF Zhukovskii (2006) -
Fransson, L., Eriksson, T., Edström, K., Gustafsson, T. & Thomas, J. Influence of carbon black and binder on Li-ion batteries. J. Power Sources 101, 1–9 (2001).
(
10.1016/S0378-7753(01)00481-5
) / J. Power Sources by L Fransson (2001) -
Sahay, R. et al. High aspect ratio electrospun cuo nanofibers as anode material for lithium-ion batteries with superior cycleability. J. Phys. Chem. C 116, 18087–18092 (2012).
(
10.1021/jp3053949
) / J. Phys. Chem. C by R Sahay (2012) -
Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013).
(
10.1038/nmat3784
) / Nat. Mater. by Y-Y Hu (2013) -
Su, D., Ford, M. & Wang, G. Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. Sci. Rep. 2, 924 (2012).
(
10.1038/srep00924
) / Sci. Rep. by D Su (2012) -
Qiao, R., Chuang, Y.-D., Yan, S. & Yang, W. Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS One 7, e49182 (2012).
(
10.1371/journal.pone.0049182
) / PLoS One by R Qiao (2012) - Garvie, L. A. J. & Graven, A. J. Use of electron-energy loss near-edge fine structure in the study of minerals. Am. Mineral. 79, 411–425 (1994). / Am. Mineral. by LAJ Garvie (1994)
-
Wang, F. et al. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190–1197 (2011).
(
10.1021/nn1028168
) / ACS Nano by F Wang (2011) -
Dollé, M., Grugeon, S., Beaudoin, B., Dupont, L. & Tarascon, J.-M. In situ TEM study of the interface carbon/electrolyte. J. Power Sources 97, 104–106 (2001).
(
10.1016/S0378-7753(01)00507-9
) / J. Power Sources by M Dollé (2001) -
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
(
10.1021/cr030203g
) / Chem. Rev. by K Xu (2004) -
Lu, P. & Harris, S. J. Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011).
(
10.1016/j.elecom.2011.06.026
) / Electrochem. Commun. by P Lu (2011) -
Shi, S. et al. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012).
(
10.1021/ja305366r
) / J. Am. Chem. Soc. by S Shi (2012) -
Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in li ion batteries. Science 342, 716–720 (2013).
(
10.1126/science.1241882
) / Science by M Ebner (2013) -
Shyam, B. et al. Structural and mechanistic revelations on an iron conversion reaction from pair distribution function analysis. Angew. Chem. Int. Ed. 51, 4852–4855 (2012).
(
10.1002/anie.201200244
) / Angew. Chem. Int. Ed. by B Shyam (2012) -
Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).
(
10.1002/anie.200702505
) / Angew. Chem. Int. Ed. by PG Bruce (2008) -
Liu, H., Wang, G., Liu, J., Qiao, S. & Ahn, H. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J. Mater. Chem. 21, 3046–3052 (2011).
(
10.1039/c0jm03132a
) / J. Mater. Chem. by H Liu (2011) -
Chen, Q. & Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 12, 1102–1106 (2013).
(
10.1038/nmat3741
) / Nat. Mater. by Q Chen (2013) -
Meirer, F. et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 18, 773–781 (2011).
(
10.1107/S0909049511019364
) / J. Synchrotron Radiat. by F Meirer (2011) -
Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys 514Nelson Thornes (1992).
(
10.1007/978-1-4899-3051-4
) -
Gregorczyk, K. E., Liu, Y., Sullivan, J. P. & Rubloff, G. W. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2 . ACS Nano 7, 6354–6360 (2013).
(
10.1021/nn402451s
) / ACS Nano by KE Gregorczyk (2013)
Dates
Type | When |
---|---|
Created | 11 years, 5 months ago (Feb. 24, 2014, 5:01 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 10:53 p.m.) |
Indexed | 2 weeks ago (Aug. 6, 2025, 8:26 a.m.) |
Issued | 11 years, 5 months ago (Feb. 24, 2014) |
Published | 11 years, 5 months ago (Feb. 24, 2014) |
Published Online | 11 years, 5 months ago (Feb. 24, 2014) |
@article{Lin_2014, title={Phase evolution for conversion reaction electrodes in lithium-ion batteries}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4358}, DOI={10.1038/ncomms4358}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Lin, Feng and Nordlund, Dennis and Weng, Tsu-Chien and Zhu, Ye and Ban, Chunmei and Richards, Ryan M. and Xin, Huolin L.}, year={2014}, month=feb }