Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
63
Referenced
279
-
Guisinger, N. P. & Arnold, M. S. Beyond silicon: carbon-based nanotechnology. MRS Bull. 35, 273–276 (2010).
(
10.1557/mrs2010.729
) / MRS Bull. by NP Guisinger (2010) -
Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011).
(
10.1038/nature10680
) / Nature by K Kim (2011) -
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
(
10.1038/nmat1849
) / Nat. Mater. by AK Geim (2007) -
Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).
(
10.1103/PhysRevLett.97.216803
) / Phys. Rev. Lett. by YW Son (2006) -
Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).
(
10.1021/nl0617033
) / Nano Lett. by V Barone (2006) -
Chen, Z. H., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).
(
10.1016/j.physe.2007.06.020
) / Physica E by ZH Chen (2007) -
Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
(
10.1103/PhysRevLett.98.206805
) / Phys. Rev. Lett. by MY Han (2007) -
Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).
(
10.1126/science.1150878
) / Science by XL Li (2008) -
Bai, J. W., Duan, X. F. & Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 9, 2083–2087 (2009).
(
10.1021/nl900531n
) / Nano Lett. by JW Bai (2009) -
Sinitskii, A. & Tour, J. M. Patterning graphene nanoribbons using copper oxide nanowires. Appl. Phys. Lett. 100, 103106 (2012).
(
10.1063/1.3692744
) / Appl. Phys. Lett. by A Sinitskii (2012) -
Ci, L. J. et al. Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008).
(
10.1007/s12274-008-8020-9
) / Nano Res. by LJ Ci (2008) -
Campos, L. C., Manfrinato, V. R., Sanchez-Yamagishi, J. D., Kong, J. & Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 9, 2600–2604 (2009).
(
10.1021/nl900811r
) / Nano Lett. by LC Campos (2009) -
Mohanty, N. et al. Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nat. Commun. 3, 844 (2012).
(
10.1038/ncomms1834
) / Nat. Commun. by N Mohanty (2012) -
Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).
(
10.1038/nature07872
) / Nature by DV Kosynkin (2009) -
Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G. & Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).
(
10.1038/nature07919
) / Nature by LY Jiao (2009) -
Cano-Marquez, A. G. et al. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527–1533 (2009).
(
10.1021/nl803585s
) / Nano Lett. by AG Cano-Marquez (2009) -
Sinitskii, A. et al. Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes. Appl. Phys. Lett. 95, 253108 (2009).
(
10.1063/1.3276912
) / Appl. Phys. Lett. by A Sinitskii (2009) -
Jiao, L. Y., Wang, X. R., Diankov, G., Wang, H. L. & Dai, H. J. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotech. 5, 321–325 (2010).
(
10.1038/nnano.2010.54
) / Nat. Nanotech. by LY Jiao (2010) -
Kosynkin, D. V. et al. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapour. ACS Nano 5, 968–974 (2011).
(
10.1021/nn102326c
) / ACS Nano by DV Kosynkin (2011) -
Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).
(
10.1103/PhysRevLett.104.056801
) / Phys. Rev. Lett. by MY Han (2010) -
Oostinga, J. B., Sacepe, B., Craciun, M. F. & Morpurgo, A. F. Magnetotransport through graphene nanoribbons. Phys. Rev. B 81, 193408 (2010).
(
10.1103/PhysRevB.81.193408
) / Phys. Rev. B by JB Oostinga (2010) -
Mucciolo, E. R., Castro Neto, A. H. & Lewenkopf, C. H. Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B 79, 075407 (2009).
(
10.1103/PhysRevB.79.075407
) / Phys. Rev. B by ER Mucciolo (2009) -
Campos-Delgado, J. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 8, 2773–2778 (2008).
(
10.1021/nl801316d
) / Nano Lett. by J Campos-Delgado (2008) -
Chuvilin, A. et al. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 10, 687–692 (2011).
(
10.1038/nmat3082
) / Nat. Mater. by A Chuvilin (2011) -
Chamberlain, T. W. et al. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 6, 3943–3953 (2012).
(
10.1021/nn300137j
) / ACS Nano by TW Chamberlain (2012) -
Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).
(
10.1038/nature09211
) / Nature by JM Cai (2010) -
Ruffieux, P. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 6, 6930–6935 (2012).
(
10.1021/nn3021376
) / ACS Nano by P Ruffieux (2012) -
Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotech. 7, 713–717 (2012).
(
10.1038/nnano.2012.169
) / Nat. Nanotech. by M Koch (2012) -
Huang, H. et al. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).
(
10.1038/srep00983
) / Sci. Rep. by H Huang (2012) -
Chen, Y.-C. et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013).
(
10.1021/nn401948e
) / ACS Nano by Y-C Chen (2013) -
Blankenburg, S. et al. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6, 2020–2025 (2012).
(
10.1021/nn203129a
) / ACS Nano by S Blankenburg (2012) -
van der Lit, J. et al. Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom. Nat. Commun. 4, 2023 (2013).
(
10.1038/ncomms3023
) / Nat. Commun. by J van der Lit (2013) -
Bronner, C. et al. Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: end states, band gap, and dispersion. Phys. Rev. B 86, 085444 (2012).
(
10.1103/PhysRevB.86.085444
) / Phys. Rev. B by C Bronner (2012) -
Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).
(
10.1103/PhysRevLett.108.216801
) / Phys. Rev. Lett. by S Linden (2012) -
Sakamoto, J., van Heijst, J., Lukin, O. & Schluter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).
(
10.1002/anie.200801863
) / Angew. Chem. Int. Ed. by J Sakamoto (2009) -
Chen, L., Hernandez, Y., Feng, X. L. & Mullen, K. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012).
(
10.1002/anie.201201084
) / Angew. Chem. Int. Ed. by L Chen (2012) -
Pisula, W., Feng, X. L. & Mullen, K. Charge-carrier transporting graphene-type molecules. Chem. Mater. 23, 554–567 (2011).
(
10.1021/cm102252w
) / Chem. Mater. by W Pisula (2011) -
Yang, X. Y. et al. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130, 4216–4217 (2008).
(
10.1021/ja710234t
) / J. Am. Chem. Soc. by XY Yang (2008) -
Dossel, L., Gherghel, L., Feng, X. L. & Mullen, K. Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free. Angew. Chem. Int. Ed. 50, 2540–2543 (2011).
(
10.1002/anie.201006593
) / Angew. Chem. Int. Ed. by L Dossel (2011) -
Schwab, M. G. et al. Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 134, 18169–18172 (2012).
(
10.1021/ja307697j
) / J. Am. Chem. Soc. by MG Schwab (2012) -
Chen, Y. & Pepin, A. Nanofabrication: conventional and nonconventional methods. Electrophoresis 22, 187–207 (2001).
(
10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
) / Electrophoresis by Y Chen (2001) -
Fursina, A., Lee, S., Sofin, R. G. S., Shvets, I. V. & Natelson, D. Nanogaps with very large aspect ratios for electrical measurements. Appl. Phys. Lett. 92, 113102 (2008).
(
10.1063/1.2895644
) / Appl. Phys. Lett. by A Fursina (2008) -
Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
(
10.1103/PhysRevLett.99.186801
) / Phys. Rev. Lett. by L Yang (2007) -
Wang, S. D. & Wang, J. L. Quasiparticle energies and optical excitations in chevron-type graphene nanoribbon. J. Phys. Chem. C 116, 10193–10197 (2012).
(
10.1021/jp2125872
) / J. Phys. Chem. C by SD Wang (2012) -
Yamamoto, T. et al. Preparation of π-conjugated poly(thiophene-2,5-diyl), poly(p-phenylene), and related polymers using zerovalent nickel complexes. linear structure and properties of the π-conjugated polymers. Macromolecules 25, 1214–1223 (1992).
(
10.1021/ma00030a003
) / Macromolecules by T Yamamoto (1992) -
Simpson, C. D. et al. Nanosized molecular propellers by cyclodehydrogenation of polyphenylene dendrimers. J. Am. Chem. Soc. 126, 3139–3147 (2004).
(
10.1021/ja036732j
) / J. Am. Chem. Soc. by CD Simpson (2004) -
Al-Jishi, R. & Dresselhaus, G. Lattice-dynamical model for graphite. Phys. Rev. B 26, 4514–4522 (1982).
(
10.1103/PhysRevB.26.4514
) / Phys. Rev. B by R Al-Jishi (1982) -
Rader, H. J. et al. Processing of giant graphene molecules by soft-landing mass spectrometry. Nat. Mater. 5, 276–280 (2006).
(
10.1038/nmat1597
) / Nat. Mater. by HJ Rader (2006) -
Sinitskii, A., Dimiev, A., Kosynkin, D. V. & Tour, J. M. Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano 4, 5405–5413 (2010).
(
10.1021/nn101019h
) / ACS Nano by A Sinitskii (2010) -
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
(
10.1103/PhysRevLett.97.187401
) / Phys. Rev. Lett. by AC Ferrari (2006) -
Negri, F., Castiglioni, C., Tommasini, M. & Zerbi, G. A computational study of the Raman spectra of large polycyclic aromatic hydrocarbons: Toward molecularly defined subunits of graphite. J. Phys. Chem. A 106, 3306–3317 (2002).
(
10.1021/jp0128473
) / J. Phys. Chem. A by F Negri (2002) -
Castiglioni, C., Mapelli, C., Negri, F. & Zerbi, G. Origin of the D line in the Raman spectrum of graphite: A study based on Raman frequencies and intensities of polycyclic aromatic hydrocarbon molecules. J. Chem. Phys. 114, 963–974 (2001).
(
10.1063/1.1329670
) / J. Chem. Phys. by C Castiglioni (2001) -
Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon NY 45, 1558–1565 (2007).
(
10.1016/j.carbon.2007.02.034
) / Carbon NY by S Stankovich (2007) -
Stevenson, S. et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401, 55–57 (1999).
(
10.1038/43415
) / Nature by S Stevenson (1999) -
Tao, C. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616–620 (2011).
(
10.1038/nphys1991
) / Nat. Phys. by CG Tao (2011) -
Baringhaus, J., Edler, F. & Tegenkamp, C. Edge-states in graphene nanoribbons: a combined spectroscopy and transport study. J. Phys. Condens. Matter 25, 392001 (2013).
(
10.1088/0953-8984/25/39/392001
) / J. Phys. Condens. Matter by J Baringhaus (2013) -
Hughes, J. M. et al. High quality dispersions of hexabenzocoronene in organic solvents. J. Am. Chem. Soc. 134, 12168–12179 (2012).
(
10.1021/ja303683v
) / J. Am. Chem. Soc. by JM Hughes (2012) -
Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).
(
10.1103/PhysRevLett.101.026803
) / Phys. Rev. Lett. by G Giovannetti (2008) -
Gierz, I., Riedl, C., Starke, U., Ast, C. R. & Kern, K. Atomic hole doping of graphene. Nano Lett. 8, 4603–4607 (2008).
(
10.1021/nl802996s
) / Nano Lett. by I Gierz (2008) -
Unver, E. K., Tarkuc, S., Udum, Y. A., Tanyeli, C. & Toppare, L. Effect of conjugated core building block dibenzo[a,c]phenazine unit on π-conjugated electrochromic polymers: red-shifted absorption. J. Polym. Sci. Pol. Chem. 48, 1714–1720 (2010).
(
10.1002/pola.23935
) / J. Polym. Sci. Pol. Chem. by EK Unver (2010) -
Saleh, M., Baumgarten, M., Mavrinskiy, A., Schafer, T. & Mullen, K. Triphenylene-based polymers for blue polymeric light emitting diodes. Macromolecules 43, 137–143 (2010).
(
10.1021/ma901912t
) / Macromolecules by M Saleh (2010) -
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
(
10.1088/0953-8984/21/39/395502
) / J. Phys. Condens. Matter by P Giannozzi (2009) -
Kong, L. M. et al. Graphene/Substrate charge transfer characterized by inverse photoelectron spectroscopy. J. Phys. Chem. C 114, 21618–21624 (2010).
(
10.1021/jp108616h
) / J. Phys. Chem. C by LM Kong (2010)
Dates
Type | When |
---|---|
Created | 11 years, 6 months ago (Feb. 10, 2014, 7:53 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 10:49 p.m.) |
Indexed | 14 minutes ago (Aug. 30, 2025, 4:21 p.m.) |
Issued | 11 years, 6 months ago (Feb. 10, 2014) |
Published | 11 years, 6 months ago (Feb. 10, 2014) |
Published Online | 11 years, 6 months ago (Feb. 10, 2014) |
@article{Vo_2014, title={Large-scale solution synthesis of narrow graphene nanoribbons}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4189}, DOI={10.1038/ncomms4189}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Vo, Timothy H. and Shekhirev, Mikhail and Kunkel, Donna A. and Morton, Martha D. and Berglund, Eric and Kong, Lingmei and Wilson, Peter M. and Dowben, Peter A. and Enders, Axel and Sinitskii, Alexander}, year={2014}, month=feb }