Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Zhu, W., Low, T., Lee, Y.-H., Wang, H., Farmer, D. B., Kong, J., Xia, F., & Avouris, P. (2014). Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature Communications, 5(1).

Authors 8
  1. Wenjuan Zhu (first)
  2. Tony Low (additional)
  3. Yi-Hsien Lee (additional)
  4. Han Wang (additional)
  5. Damon B. Farmer (additional)
  6. Jing Kong (additional)
  7. Fengnian Xia (additional)
  8. Phaedon Avouris (additional)
References 62 Referenced 395
  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  2. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). (10.1038/nchem.1589) / Nat. Chem. by M Chhowalla (2013)
  3. Hsu, A. et al. Large-area 2-D electronics: materials, technology, and devices. Proc. IEEE 101, 1638–1652 (2013). (10.1109/JPROC.2013.2251311) / Proc. IEEE by A Hsu (2013)
  4. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  5. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013). (10.1021/nl400516a) / Nano Lett. by RS Sundaram (2013)
  6. Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012). (10.1021/nl301485q) / Nano Lett. by HS Lee (2012)
  7. Yin, Z. et al. Single-layer MoS2 phototransistors. Acs Nano 6, 74–80 (2011). (10.1021/nn2024557) / Acs Nano by Z Yin (2011)
  8. Dashora, A., Ahuja, U. & Venugopalan, K. Electronic and optical properties of MoS2 thin films: feasibility for solar cells. Comput Mater Sci 69, 216–221 (2013). (10.1016/j.commatsci.2012.11.062) / Comput Mater Sci by A Dashora (2013)
  9. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012). (10.1021/nl301335q) / Nano Lett. by J Pu (2012)
  10. Chang, H.-Y. et al. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. Acs Nano 7, 5446–5452 (2013). (10.1021/nn401429w) / Acs Nano by H-Y Chang (2013)
  11. Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014505–014507 (2007). (10.1063/1.2407388) / J. Appl. Phys. by A Ayari (2007)
  12. Benameur, M. M. et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011). (10.1088/0957-4484/22/12/125706) / Nanotechnology by MM Benameur (2011)
  13. Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2 . Nano Lett. 13, 358–363 (2013). (10.1021/nl303321g) / Nano Lett. by M Buscema (2013)
  14. Ghatak, S., Pal, A. N. & Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. Acs Nano 5, 7707–7712 (2011). (10.1021/nn202852j) / Acs Nano by S Ghatak (2011)
  15. Kim, J.-Y., Choi, S. M., Seo, W.-S. & Cho, W.-S. Thermal and electronic properties of exfoliated metal chalcogenides. Bull Korean Chem. Soc. 31, 3225–3227 (2010). (10.5012/bkcs.2010.31.11.3225) / Bull Korean Chem. Soc. by J-Y Kim (2010)
  16. Lembke, D. & Kis, A. Breakdown of high-performance monolayer MoS2 transistors. Acs Nano 6, 10070–10075 (2012). (10.1021/nn303772b) / Acs Nano by D Lembke (2012)
  17. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013). (10.1038/nmat3687) / Nat. Mater. by B Radisavljevic (2013)
  18. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat Nano 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat Nano by B Radisavljevic (2011)
  19. Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. Acs Nano 6, 8563–8569 (2012). (10.1021/nn303513c) / Acs Nano by H Liu (2012)
  20. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012). (10.1038/ncomms2018) / Nat. Commun. by S Kim (2012)
  21. Bao, W., Cai, X., Kim, D., Sridhara, K. & Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013). (10.1063/1.4789365) / Appl. Phys. Lett. by W Bao (2013)
  22. Jariwala, D. et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102, 173107 (2013). (10.1063/1.4803920) / Appl. Phys. Lett. by D Jariwala (2013)
  23. Li, S.-L. et al. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano. Lett. 13, 3546–3552 (2013). (10.1021/nl4010783) / Nano. Lett. by S-L Li (2013)
  24. Perera, M. M. et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. Acs Nano 7, 4449–4458 (2013). (10.1021/nn401053g) / Acs Nano by MM Perera (2013)
  25. Pradhan, N. R. et al. Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2 . Appl. Phys. Lett. 102, 123105 (2013). (10.1063/1.4799172) / Appl. Phys. Lett. by NR Pradhan (2013)
  26. Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012). (10.1021/nl2021575) / Nano Lett. by Y Zhang (2012)
  27. Qiu, H. et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100, 123104 (2012). (10.1063/1.3696045) / Appl. Phys. Lett. by H Qiu (2012)
  28. Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013). (10.1021/nl303583v) / Nano Lett. by S Das (2013)
  29. Liu, K.-K. et al. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 12, 1538–1544 (2012). (10.1021/nl2043612) / Nano Lett. by K-K Liu (2012)
  30. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013). (10.1038/nmat3673) / Nat. Mater. by S Najmaei (2013)
  31. Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012). (10.1002/adma.201104798) / Adv. Mater. by Y-H Lee (2012)
  32. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-Area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 8, 966–971 (2012). (10.1002/smll.201102654) / Small. by Y Zhan (2012)
  33. Wang, H. et al. inIEEE International Electron Devices Meeting (IEDM) 4.6.1–4.6.4San Francisco, CA (2012).
  34. Amani, M. et al. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102, 193107 (2013). (10.1063/1.4804546) / Appl. Phys. Lett. by M Amani (2013)
  35. Liu, H. et al. Statistical Study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640–2646 (2013). (10.1021/nl400778q) / Nano Lett. by H Liu (2013)
  36. Wu, W. et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl. Phys. Lett. 102, 142106 (2013). (10.1063/1.4801861) / Appl. Phys. Lett. by W Wu (2013)
  37. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013). (10.1021/nl4007479) / Nano Lett. by W Zhou (2013)
  38. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nano 8, 146–147 (2013). (10.1038/nnano.2013.30) / Nat. Nano by MS Fuhrer (2013)
  39. Lee, Y.-H. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013). (10.1021/nl400687n) / Nano Lett. by Y-H Lee (2013)
  40. Li, S.-L. et al. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. Acs Nano 6, 7381–7388 (2012). (10.1021/nn3025173) / Acs Nano by S-L Li (2012)
  41. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, (2012). (10.1103/PhysRevB.85.165440)
  42. Pollak, M. & Shklovskii, B. Hopping Transport in Solids Vol. 28, (Elsevier Science Publishers B.V. (1991).
  43. Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013). (10.1038/ncomms3642) / Nat. Commun. by H Qiu (2013)
  44. Nicollian, E. H. & Brews, J. R. MOS (metal oxide semiconductor) Physics and Technology Wiley-Interscience Publication (1982).
  45. Shi, H., Pan, H., Zhang, Y.-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2 . Phys. Rev.B 87, 155304 (2013). (10.1103/PhysRevB.87.155304) / Phys. Rev.B by H Shi (2013)
  46. Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009). (10.1103/PhysRevB.79.115409) / Phys. Rev. B by S Lebègue (2009)
  47. Mott, N. F. & Davis, E. A. Electronic Processes in Non-crystalline Materials Oxford Press (1979).
  48. Mott, N. F. Conduction in non-crystalline materials. Philos Mag. 21, 863–867 (1969). / Philos Mag. by NF Mott (1969)
  49. Monroe, D. Hopping in exponential band tails. Phys. Rev. Lett. 54, 146–149 (1985). (10.1103/PhysRevLett.54.146) / Phys. Rev. Lett. by D Monroe (1985)
  50. Bässler, M. S. H. Calculation of energy relaxation and transit time due to hopping in an exponential band tail. Phil. Mag. Lett. 56, 109–112 (1987). (10.1080/09500838708205258) / Phil. Mag. Lett. by MSH Bässler (1987)
  51. Tiedje, T. & Rose, A. A physical interpretation of dispersive transport in disordered semiconductors. Solid State Commun. 37, 49–52 (1981). (10.1016/0038-1098(81)90886-3) / Solid State Commun. by T Tiedje (1981)
  52. Hori, T. Gate Dielectrics and MOS ULSIs Principles, Technologies, and Applications Springer (1997). (10.1007/978-3-642-60856-8)
  53. Salleo, A. et al. Intrinsic hole mobility and trapping in a regioregular poly(thiophene). Phys. Rev. B 70, 115311 (2004). (10.1103/PhysRevB.70.115311) / Phys. Rev. B by A Salleo (2004)
  54. Völkel, A. R., Street, R. A. & Knipp, D. Carrier transport and density of state distributions in pentacene transistors. Phys. Rev. B 66, 195336 (2002). (10.1103/PhysRevB.66.195336) / Phys. Rev. B by AR Völkel (2002)
  55. Ferry, D. Transport in Nanostructure Vol. 2, (Cambridge University Press (2009).
  56. Yuan Taur, T. H. N. Fundamentals of Modern VLSI Devices Cambridge University Press (1998).
  57. Ran-Hong, Y., Ourmazd, A. & Lee, K. F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992). (10.1109/16.141237) / IEEE Trans. Electron Devices by Y Ran-Hong (1992)
  58. Majumdar, A., Zhibin, R., Koester, S. J. & Haensch, W. Undoped-body extremely thin SOI MOSFETs with back gates. IEEE Trans. Electron Devices 56, 2270–2276 (2009). (10.1109/TED.2009.2028057) / IEEE Trans. Electron Devices by A Majumdar (2009)
  59. Low, T. et al. Modeling study of the impact of surface roughness on silicon and Germanium UTB MOSFETs. IEEE Trans. Electron Devices 52, 2430–2439 (2005). (10.1109/TED.2005.857188) / IEEE Trans. Electron Devices by T Low (2005)
  60. Ohashi, T., Takahashi, T., Beppu, N., Oda, S. & Uchida, K. inIEEE International Electron Devices Meeting (IEDM) 16.14.11–16.14.14Washington, DC (2011).
  61. Salmani-Jelodar, M., Yaohua, T. & Klimeck, G. inInternational Semiconductor Device Research Symposium (ISDRS) 1–2College Park, MD (2011).
  62. Merchant, S. et al. in Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs, 1991 (ISPSD '91), 31–35 (Baltimore, MD).
Dates
Type When
Created 11 years, 7 months ago (Jan. 17, 2014, 5:20 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 10:56 p.m.)
Indexed 3 days, 4 hours ago (Aug. 19, 2025, 6:16 a.m.)
Issued 11 years, 7 months ago (Jan. 17, 2014)
Published 11 years, 7 months ago (Jan. 17, 2014)
Published Online 11 years, 7 months ago (Jan. 17, 2014)
Funders 0

None

@article{Zhu_2014, title={Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4087}, DOI={10.1038/ncomms4087}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Zhu, Wenjuan and Low, Tony and Lee, Yi-Hsien and Wang, Han and Farmer, Damon B. and Kong, Jing and Xia, Fengnian and Avouris, Phaedon}, year={2014}, month=jan }