Abstract
AbstractFerroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from those of the domains themselves, leading to new exploitable phenomena. Even more exciting is that a non-ferroelectric material may have domain boundaries that are ferroelectric. Many materials possess translational antiphase boundaries. Such boundaries could be interesting entities to carry information if they were ferroelectric. Here we show first that antiphase boundaries in antiferroelectrics may possess ferroelectricity. We then identify these boundaries in the classical antiferroelectric lead zirconate and evidence their polarity by electron microscopy using negative spherical-aberration imaging technique. Ab initio modelling confirms the polar bi-stable nature of the walls. Ferroelectric antiphase boundaries could make high-density non-volatile memory; in comparison with the magnetic domain wall memory, they do not require current for operation and are an order of magnitude thinner.
References
24
Referenced
128
-
Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).
(
10.1038/nmat2373
) / Nat. Mater. by J Seidel (2009) -
Farokhipoor, S. & Noheda, B. Conduction through 71 degrees domainwalls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).
(
10.1103/PhysRevLett.107.127601
) / Phys. Rev. Lett. by S Farokhipoor (2011) -
Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2012).
(
10.1021/nl203349b
) / Nano Lett. by P Maksymovych (2012) -
Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).
(
10.1038/nmat3249
) / Nat. Mater. by D Meier (2012) -
Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating batio. Nat. Commun. 4, 1808 (2013).
(
10.1038/ncomms2839
) / Nat. Commun. by T Sluka (2013) -
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).
(
10.1038/nnano.2009.451
) / Nat. Nanotechnol. by SY Yang (2010) -
Van Aert, S. et al. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523 (2012).
(
10.1002/adma.201103717
) / Adv. Mater. by S Van Aert (2012) -
Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).
(
10.1126/science.1079121
) / Science by CL Jia (2003) -
Shirane, G., Sawaguchi, E. & Takagi, Y. Dielectric properties of lead zirconate. Phys. Rev. 84, 476–481 (1951).
(
10.1103/PhysRev.84.476
) / Phys. Rev. by G Shirane (1951) -
Isupov, V. A. Ferroelectric and antiferroelectric perovskites PbB’0.5B”0.5O3 . Ferroelectrics 289, 131–195 (2003).
(
10.1080/00150190390221368
) / Ferroelectrics by VA Isupov (2003) -
Tan, X., Ma, C., Frederick, J., Beckman, S. & Webber, K. G. The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J. Am. Ceram. Soc. 94, 4091–4107 (2011).
(
10.1111/j.1551-2916.2011.04917.x
) / J. Am. Ceram. Soc. by X Tan (2011) -
Tagantsev, A. K. et al. The origin of antiferroelectricity in PbZrO3 . Nat. Commun. 4, 2229 (2013).
(
10.1038/ncomms3229
) / Nat. Commun. by AK Tagantsev (2013) -
Cross, L. E. A thermodynamic treatment of ferroelectricity and antiferroelectricity in pseudo-cubic dielectrics. Philos. Mag. 1, 76–92 (1956).
(
10.1080/14786435608238078
) / Philos. Mag. by LE Cross (1956) -
Okada, K. Phenomenological theory of antiferroelectric transition. i. second-order transition. J. Phys. Soc. Jpn 27, 420 (1969).
(
10.1143/JPSJ.27.420
) / J. Phys. Soc. Jpn by K Okada (1969) -
Balashova, E. V. & Tagantsev, A. K. Polarization response of crystals with structural and ferroelectric instabilities. Phys. Rev. B 48, 9979–9986 (1993).
(
10.1103/PhysRevB.48.9979
) / Phys. Rev. B by EV Balashova (1993) -
Ostapchuk, T. et al. Polar phonons and central mode in antiferroelectric PbZrO3 ceramics. J. Phy. Condens. Matter. 13, 2677–2689 (2001).
(
10.1088/0953-8984/13/11/322
) / J. Phy. Condens. Matter. by T Ostapchuk (2001) -
Cowley, R. A. Lattice dynamics and phase transitions of strontium titanate. Phys. Rev. 134, A981 (1964).
(
10.1103/PhysRev.134.A981
) / Phys. Rev. by RA Cowley (1964) -
Tagantsev, A. K. & Cross, L. E. and Fousek. Domains in Ferroic Crystals and Thin Films Springer (2010).
(
10.1007/978-1-4419-1417-0
) -
Fouskova, A. & Fousek, K. Continuun theory of domain walls Gd2(MoO4)3 . Phys. Stat. Sol. (a) 32, 213 (1975).
(
10.1002/pssa.2210320123
) / Phys. Stat. Sol. (a) by A Fouskova (1975) -
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
(
10.1126/science.1145799
) / Science by SSP Parkin (2008) -
Jia, C.-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).
(
10.1038/nmat2080
) / Nat. Mater. by C-L Jia (2008) -
Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).
(
10.1088/0953-8984/21/39/395502
) / J. Phys. Condens. Matter. by P Giannozzi (2009) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).
(
10.1103/PhysRevB.41.7892
) / Phys. Rev. B by D Vanderbilt (1990)
Dates
Type | When |
---|---|
Created | 11 years, 7 months ago (Jan. 8, 2014, 8:11 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 11 p.m.) |
Indexed | 1 week, 3 days ago (Aug. 23, 2025, 9:57 p.m.) |
Issued | 11 years, 7 months ago (Jan. 8, 2014) |
Published | 11 years, 7 months ago (Jan. 8, 2014) |
Published Online | 11 years, 7 months ago (Jan. 8, 2014) |
@article{Wei_2014, title={Ferroelectric translational antiphase boundaries in nonpolar materials}, volume={5}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms4031}, DOI={10.1038/ncomms4031}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wei, Xian-Kui and Tagantsev, Alexander K. and Kvasov, Alexander and Roleder, Krystian and Jia, Chun-Lin and Setter, Nava}, year={2014}, month=jan }