Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Khanchaitit, P., Han, K., Gadinski, M. R., Li, Q., & Wang, Q. (2013). Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nature Communications, 4(1).

Authors 5
  1. Paisan Khanchaitit (first)
  2. Kuo Han (additional)
  3. Matthew R. Gadinski (additional)
  4. Qi Li (additional)
  5. Qing Wang (additional)
References 29 Referenced 435
  1. Nalwa H. Ed.Handbook of Low and High Dielectric Constant Materials and Their Applications Academic Press (1999).
  2. Cao, Y. et al. The future of nanodielectrics in the electrical power industry. IEEE Trans. Dielect. Elect. Insul. 11, 797–807 (2004). (10.1109/TDEI.2004.1349785) / IEEE Trans. Dielect. Elect. Insul. by Y Cao (2004)
  3. Rabuffi, M. et al. Status quo and future prospects for metalized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939–1942 (2002). (10.1109/TPS.2002.805318) / IEEE Trans. Plasma Sci. by M Rabuffi (2002)
  4. Fredin, L. A. et al. Enhanced energy storage and suppressed dielectric loss in oxide core–shell–polyolefin nanocomposites by moderating internal surface area and increasing shell thickness. Adv. Mater. 24, 5946–5953 (2012). (10.1002/adma.201202183) / Adv. Mater. by LA Fredin (2012)
  5. Michalczyk, P. et al. Ultimate properties of the polypropylene film for energy storage capacitors. IEEE Trans. Magn. 39, 362–365 (2003). (10.1109/TMAG.2002.806413) / IEEE Trans. Magn. by P Michalczyk (2003)
  6. Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006). (10.1126/science.1127798) / Science by B Chu (2006)
  7. Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983). (10.1126/science.220.4602.1115) / Science by AJ Lovinger (1983)
  8. Tashiro, K. Crystal structure and phase transition of PVDF and related copolymers. inFerroelectric Polymers: Chemistry, Physics, and Applications (ed Nalwa H. S. 63–1821st Ed. Dekker (1995).
  9. Lu, Y. Y. et al. A modular approach to ferroelectric polymers with chemically tunable Curie temperatures and dielectric constants. J. Am. Chem. Soc. 128, 8120–8121 (2006). (10.1021/ja062306x) / J. Am. Chem. Soc. by YY Lu (2006)
  10. Furukawa, T. et al. Hysteresis phenomena in polyvinylidene fluoride under high electric field. J. Appl. Phys. 51, 1135–1141 (1980). (10.1063/1.327723) / J. Appl. Phys. by T Furukawa (1980)
  11. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Trans. 18, 143–211 (1989). (10.1080/01411598908206863) / Phase Trans. by T Furukawa (1989)
  12. Ranjan, V. et al. Phase equilibria in high energy density PVDF-based polymers. Phys. Rev. Lett. 99, 047801 (2007). (10.1103/PhysRevLett.99.047801) / Phys. Rev. Lett. by V Ranjan (2007)
  13. Tan, Q. et al. Advanced dielectrics for capacitors. IEEJ Trans. Fund. Mater. 126, 1153–1159 (2006). (10.1541/ieejfms.126.1153) / IEEJ Trans. Fund. Mater. by Q Tan (2006)
  14. Zhang, Z. et al. The structure-property relationship of poly(vinylidene difluoride)-based polymers with energy storage and loss under applied electric fields. Macromolecules 40, 9391–9397 (2007). (10.1021/ma071561e) / Macromolecules by Z Zhang (2007)
  15. Wang, Y. et al. Recent development of high energy density polymers for dielectric capacitors. IEEE Trans. Dielectr. Electr. Insul. 17, 1036–1042 (2010). (10.1109/TDEI.2010.5539672) / IEEE Trans. Dielectr. Electr. Insul. by Y Wang (2010)
  16. Taguet, A. et al. Crosslinking of vinylidene fluoride-containing fluoropolymers. Adv. Polym. Sci. 184, 127–211 (2005). (10.1007/b136245) / Adv. Polym. Sci. by A Taguet (2005)
  17. Casalini, R. et al. Network structure in poly(vinylidene fluoride-trifluoroethylene) electrostrictive films. Appl. Phys. Lett. 78, 439–445 (2001). / Appl. Phys. Lett. by R Casalini (2001)
  18. Nasef, M. M. et al. Electron irradiation effects on partially fluorinated polymer films: Structure–property relationships. Nucl. Instrum. Methods Phys. Res. B 201, 604–614 (2003). (10.1016/S0168-583X(02)02068-2) / Nucl. Instrum. Methods Phys. Res. B by MM Nasef (2003)
  19. Latour, M. Characterization of a polyvinylidene copolymer by infrared spectroscopy and X-ray. Ferroelectrics 60, 71–76 (1984). (10.1080/00150198408017511) / Ferroelectrics by M Latour (1984)
  20. Casalini, R. et al. Electromechanical properties of poly(vinylidene fluoride- trifluoroethylene) networks. J. Polym. Sci. B Polym. Phys. 40, 1975–1984 (2002). (10.1002/polb.10267) / J. Polym. Sci. B Polym. Phys. by R Casalini (2002)
  21. Chen, Q. et al. High field tunneling as a limiting factor of maximum energy density in dielectric energy storage capacitors. Appl. Phys. Lett. 92, 142909 (2008). (10.1063/1.2903115) / Appl. Phys. Lett. by Q Chen (2008)
  22. Mizutani, T. et al. Thermally stimulated currents in polyvinylidene flouride: I. Unstretched α-form PVDF. J. Phys. D: Appl. Phys. 14, 1139–1147 (1981). (10.1088/0022-3727/14/6/022) / J. Phys. D: Appl. Phys. by T Mizutani (1981)
  23. Abernethy, R. The New Weibull Handbook Abernethy (1993).
  24. Zhu, Y. et al. Electrical properties of silane crosslinked polyethylene in comparison with DCP crosslinked polyethylene. IEEE Trans. Dielectr. Electr. Insul. 6, 164–168 (1999). (10.1109/94.765906) / IEEE Trans. Dielectr. Electr. Insul. by Y Zhu (1999)
  25. Nalwa H. ed.Ferroelectric Polymers: Chemistry, Physics, and Applications Dekker (1999).
  26. Zhang, Q. M. et al. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998). (10.1126/science.280.5372.2101) / Science by QM Zhang (1998)
  27. van Breemen, A. J. J. M. et al. Photocrosslinking of ferroelectric polymers and its application in three dimensional memory arrays. Appl. Phys. Lett. 98, 183302 (2011). (10.1063/1.3571284) / Appl. Phys. Lett. by AJJM van Breemen (2011)
  28. Shin, Y. J. et al. Chemically cross-linked thin poly(vinylidene fluoride-co-trifluoroethylene) films for nonvolatile ferroelectric polymer memory. ACS Appl. Mater. Interf. 3, 582–589 (2011). (10.1021/am1011657) / ACS Appl. Mater. Interf. by YJ Shin (2011)
  29. Sinha, J. K. Modified Sawyer and Tower circuit for the investigation of ferroelectric samples. J. Sci. Instrum. 42, 696–698 (1965). (10.1088/0950-7671/42/9/308) / J. Sci. Instrum. by JK Sinha (1965)
Dates
Type When
Created 11 years, 9 months ago (Nov. 26, 2013, 5:09 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:04 p.m.)
Indexed 2 days, 21 hours ago (Aug. 26, 2025, 2:51 a.m.)
Issued 11 years, 9 months ago (Nov. 26, 2013)
Published 11 years, 9 months ago (Nov. 26, 2013)
Published Online 11 years, 9 months ago (Nov. 26, 2013)
Funders 0

None

@article{Khanchaitit_2013, title={Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3845}, DOI={10.1038/ncomms3845}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Khanchaitit, Paisan and Han, Kuo and Gadinski, Matthew R. and Li, Qi and Wang, Qing}, year={2013}, month=nov }