Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Rasool, H. I., Ophus, C., Klug, W. S., Zettl, A., & Gimzewski, J. K. (2013). Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nature Communications, 4(1).

Authors 5
  1. Haider I. Rasool (first)
  2. Colin Ophus (additional)
  3. William S. Klug (additional)
  4. A. Zettl (additional)
  5. James K. Gimzewski (additional)
References 45 Referenced 267
  1. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). (10.1126/science.1157996) / Science by C Lee (2008)
  2. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007). (10.1126/science.1136836) / Science by JS Bunch (2007)
  3. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotech 6, 543–546 (2011). (10.1038/nnano.2011.123) / Nat. Nanotech by SP Koenig (2011)
  4. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  5. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (10.1038/nature04233) / Nature by KS Novoselov (2005)
  6. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). (10.1038/nature04235) / Nature by Y Zhang (2005)
  7. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). (10.1126/science.1171245) / Science by X Li (2009)
  8. Coraux, J., N’Diaye, A. T., Busse, C. & Michely, T. Structural coherency of graphene on Ir(111). Nano. Lett. 8, 565–570 (2008). (10.1021/nl0728874) / Nano. Lett. by J Coraux (2008)
  9. Ugeda, M. M. et al. Point defects on graphene on metals. Phys. Rev. Lett. 107, 116803 (2011). (10.1103/PhysRevLett.107.116803) / Phys. Rev. Lett. by MM Ugeda (2011)
  10. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: dislocations and grain boundaries. Phys. Rev. B. 81, 195420 (2010). (10.1103/PhysRevB.81.195420) / Phys. Rev. B. by OV Yazyev (2010)
  11. Liu, Y. & Yakobson, B. I. Cones, pringles, and grain boundary landscapes in graphene topology. Nano. Lett. 10, 2178–2183 (2010). (10.1021/nl100988r) / Nano. Lett. by Y Liu (2010)
  12. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007). (10.1126/science.1142882) / Science by GM Rutter (2007)
  13. Warner, J. H. et al. Dislocation-driven deformations in graphene. Science 337, 209–212 (2012). (10.1126/science.1217529) / Science by JH Warner (2012)
  14. Cockayne, E. Graphing and grafting graphene: classifying finite topological defects. Phys. Rev. B. 85, 125409 (2012). (10.1103/PhysRevB.85.125409) / Phys. Rev. B. by E Cockayne (2012)
  15. Meyer, J. C. et al. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat. Mater. 10, 209–215 (2011). (10.1038/nmat2941) / Nat. Mater. by JC Meyer (2011)
  16. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011). (10.1038/nature09718) / Nature by PY Huang (2011)
  17. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011). (10.1021/nn1033423) / ACS Nano by K Kim (2011)
  18. Yazyev, O. V. & Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806–809 (2010). (10.1038/nmat2830) / Nat. Mater. by OV Yazyev (2010)
  19. Bagri, A., Kim, S.-P., Ruoff, R. S. & Shenoy, V. B. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano. Lett. 11, 3917–3921 (2011). (10.1021/nl202118d) / Nano. Lett. by A Bagri (2011)
  20. Serov, A. Y., Ong, Z.-Y. & Pop, E. Effect of grain boundaries on thermal transport in graphene. Appl. Phys. Lett. 102, 033104 (2013). (10.1063/1.4776667) / Appl. Phys. Lett. by AY Serov (2013)
  21. Grantab, R., Shenoy, V. B. & Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946–948 (2010). (10.1126/science.1196893) / Science by R Grantab (2010)
  22. Wei, Y. et al. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11, 759–763 (2012). (10.1038/nmat3370) / Nat. Mater. by Y Wei (2012)
  23. Kotakoski, J. & Meyer, J. C. Mechanical Properties of polycrystalline graphene based on a realistic atomistic model. Phys. Rev. B. 85, 195447 (2012). (10.1103/PhysRevB.85.195447) / Phys. Rev. B. by J Kotakoski (2012)
  24. Li, X. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano. Lett. 10, 4328–4344 (2010). (10.1021/nl101629g) / Nano. Lett. by X Li (2010)
  25. Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011). (10.1021/ja109793s) / J. Am. Chem. Soc. by X Li (2011)
  26. Vlassiouk, I. et al. Role of hydrogen in chemical vapor deposition growth of large single crystal graphene. ACS Nano 5, 6069–6076 (2011). (10.1021/nn201978y) / ACS Nano by I Vlassiouk (2011)
  27. Gao, L. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012). (10.1038/ncomms1702) / Nat. Commun. by L Gao (2012)
  28. Zhou, H. et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 4, 2096 (2013). (10.1038/ncomms3096) / Nat. Commun. by H Zhou (2013)
  29. Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011). (10.1038/nmat3010) / Nat. Mater. by Q Yu (2011)
  30. Jauregui, L. A., Cao, H., Wu, W., Yu, Q. & Chen, Y. P. Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition. Solid State Commun. 151, 1100–1104 (2011). (10.1016/j.ssc.2011.05.023) / Solid State Commun. by LA Jauregui (2011)
  31. Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012). (10.1126/science.1218948) / Science by AW Tsen (2012)
  32. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nano. 5, 326–329 (2010). (10.1038/nnano.2010.53) / Nat. Nano. by J Lahiri (2010)
  33. Koepke, J. C. et al. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study. ACS Nano 7, 75–86 (2012). (10.1021/nn302064p) / ACS Nano by JC Koepke (2012)
  34. Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano. Lett. 11, 2259–2263 (2011). (10.1021/nl200429f) / Nano. Lett. by CS Ruiz-Vargas (2011)
  35. Lee, G.-H. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073–1076 (2013). (10.1126/science.1235126) / Science by G-H Lee (2013)
  36. Wei, X., Fragneaud, B., Marianetti, C. A. & Kysar, J. W. Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys. Rev. B. 80, 205407 (2009). (10.1103/PhysRevB.80.205407) / Phys. Rev. B. by X Wei (2009)
  37. Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K. & Kaski, K. Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B. 70, 245416 (2004). (10.1103/PhysRevB.70.245416) / Phys. Rev. B. by M Sammalkorpi (2004)
  38. Khare, R. et al. Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys. Rev. B 75, 075412 (2007). (10.1103/PhysRevB.75.075412) / Phys. Rev. B by R Khare (2007)
  39. Kim, K. et al. Multiply folded graphene. Phys. Rev. B. 83, 245433 (2011). (10.1103/PhysRevB.83.245433) / Phys. Rev. B. by K Kim (2011)
  40. Ortolani, L. et al. Folded graphene membranes: mapping curvature at the nanoscale. Nano. Lett. 12, 5207–5212 (2012). (10.1021/nl3023737) / Nano. Lett. by L Ortolani (2012)
  41. Lehtinen, O., Kurasch, S., Krasheninninkov, A. V. & Kaiser, U. Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat. Commun. 4, 2098 (2013). (10.1038/ncomms3098) / Nat. Commun. by O Lehtinen (2013)
  42. Kim, K. et al. Ripping graphene: preferred directions. Nano Lett. 12, 293–297 (2012). (10.1021/nl203547z) / Nano Lett. by K Kim (2012)
  43. Kisielowski, C. et al. Real-time sub-Angstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene. Phys. Rev. B 88, 024305 (2013). (10.1103/PhysRevB.88.024305) / Phys. Rev. B by C Kisielowski (2013)
  44. Yakobson, B. I. & Ding, F. Observational geology of graphene, at the nanoscale. ACS Nano 5, 1569–1574 (2011). (10.1021/nn200832y) / ACS Nano by BI Yakobson (2011)
  45. Warner, J. H. et al. Rippling graphene at the nanoscale through dislocation addition. Nano. Lett. 13, 4937–4944 (2013). (10.1021/nl402902q) / Nano. Lett. by JH Warner (2013)
Dates
Type When
Created 11 years, 9 months ago (Nov. 19, 2013, 6:44 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:08 p.m.)
Indexed 0 minutes ago (Sept. 2, 2025, 8:58 a.m.)
Issued 11 years, 9 months ago (Nov. 19, 2013)
Published 11 years, 9 months ago (Nov. 19, 2013)
Published Online 11 years, 9 months ago (Nov. 19, 2013)
Funders 0

None

@article{Rasool_2013, title={Measurement of the intrinsic strength of crystalline and polycrystalline graphene}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3811}, DOI={10.1038/ncomms3811}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Rasool, Haider I. and Ophus, Colin and Klug, William S. and Zettl, A. and Gimzewski, James K.}, year={2013}, month=nov }