Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
59
Referenced
473
-
Boahen, K. A. Neuromorphic microchips. Sci. Am. 292, 56–63 (2005).
(
10.1038/scientificamerican0505-56
) / Sci. Am. by KA Boahen (2005) -
Ha, S. D. & Ramanathan, S. Adaptive oxide electronics: a review. J. Appl. Phys. 110, 071101 (2011).
(
10.1063/1.3640806
) / J. Appl. Phys. by SD Ha (2011) -
Hopfield, J. J. Brain, neural networks, and computation. Rev. Mod. Phys. 71, S431–S437 (1999).
(
10.1103/RevModPhys.71.S431
) / Rev. Mod. Phys. by JJ Hopfield (1999) -
Chua, L. O. & Yang, L. Cellular neural networks - applications. IEEE T Circuits Syst 35, 1273–1290 (1988).
(
10.1109/31.7601
) / IEEE T Circuits Syst by LO Chua (1988) -
Aihara, K., Takabe, T. & Toyoda, M. Chaotic neural networks. Phys. Lett. A 144, 333–340 (1990).
(
10.1016/0375-9601(90)90136-C
) / Phys. Lett. A by K Aihara (1990) -
Snider, G. S. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202 (2007).
(
10.1088/0957-4484/18/36/365202
) / Nanotechnology by GS Snider (2007) -
Alibart, F. et al. An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20, 330–337 (2010).
(
10.1002/adfm.200901335
) / Adv. Funct. Mater. by F Alibart (2010) -
Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano. Lett. 10, 1297–1301 (2010).
(
10.1021/nl904092h
) / Nano. Lett. by SH Jo (2010) -
Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).
(
10.1021/nl201040y
) / Nano Lett. by D Kuzum (2012) -
Mahowald, M. & Douglas, R. A silicon neuron. Nature 354, 515–518 (1991).
(
10.1038/354515a0
) / Nature by M Mahowald (1991) -
Pershin, Y. V., La Fontaine, S. & Di Ventra, M. Memristive model of amoeba learning. Phys. Rev. E 80, 021926 (2009).
(
10.1103/PhysRevE.80.021926
) / Phys. Rev. E by YV Pershin (2009) - Snider, G. S. Spike-timing-dependent learning in memristive nanodevices. PR. INT. SYMP. NANOARCH 2008, 85–92 (2008). / PR. INT. SYMP. NANOARCH by GS Snider (2008)
-
Sejnowski, T. & Delbruck, T. The language of the brain. Sci. Am. 307, 54–59 (2012).
(
10.1038/scientificamerican1012-54
) / Sci. Am. by T Sejnowski (2012) -
Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010).
(
10.1021/cr900040x
) / Chem. Rev. by S Raoux (2010) -
Waser, R. Resistive non-volatile memory devices. Microelectron. Eng. 86, 1925–1928 (2009).
(
10.1016/j.mee.2009.03.132
) / Microelectron. Eng. by R Waser (2009) -
Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).
(
10.1038/nmat3054
) / Nat. Mater. by T Ohno (2011) -
Chang, T., Jo, S. H. & Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011).
(
10.1021/nn202983n
) / ACS Nano by T Chang (2011) -
Shima, H. et al. Resistance switching in the metal deficient-type oxides: NiO and CoO. Appl. Phys. Lett. 91, 012901 (2007).
(
10.1063/1.2753101
) / Appl. Phys. Lett. by H Shima (2007) -
Zhong, N., Shima, H. & Akinaga, H. Switchable Pt/TiO2-x/Pt schottky diodes. Jpn. J. Appl. Phys. 48, 05DF03 (2009).
(
10.1143/JJAP.48.05DF03
) / Jpn. J. Appl. Phys. by N Zhong (2009) -
Hebb, D. O., Martinez, J. L. & Glickman, S. E. The organization of behavior - a neuropsychological theory. Contemp. Psychol. 39, 1018–1020 (1994).
(
10.1037/034206
) / Contemp. Psychol. by DO Hebb (1994) -
Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).
(
10.1038/81453
) / Nat. Neurosci. by LF Abbott (2000) -
Dan, Y. & Poo, M. M. Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 (2004).
(
10.1016/j.neuron.2004.09.007
) / Neuron by Y Dan (2004) -
Diorio, C., Hasler, P., Minch, A. & Mead, C. A. A single-transistor silicon synapse. IEEE T. Electron. Dev. 43, 1972–1980 (1996).
(
10.1109/16.543035
) / IEEE T. Electron. Dev. by C Diorio (1996) -
Ishiwara, H. Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights. Jpn. J. Appl. Phys. 32, 442–446 (1993).
(
10.1143/JJAP.32.442
) / Jpn. J. Appl. Phys. by H Ishiwara (1993) -
Ishiwara, H., Aoyama, Y., Okada, S., Shimamura, C. & Tokumitsu, E. Ferroelectric neuron circuits with adaptive-learning function. Comput. Electr. Eng. 23, 431–438 (1997).
(
10.1016/S0045-7906(97)00029-3
) / Comput. Electr. Eng. by H Ishiwara (1997) -
Nishitani, Y., Kaneko, Y., Ueda, M., Morie, T. & Fujii, E. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 111, 124108 (2012).
(
10.1063/1.4729915
) / J. Appl. Phys. by Y Nishitani (2012) -
Thakoor, S., Moopenn, A., Daud, T. & Thakoor, A. P. Solid-state thin-film memistor for electronic neural networks. J. Appl. Phys. 67, 3132–3135 (1990).
(
10.1063/1.345390
) / J. Appl. Phys. by S Thakoor (1990) -
Lai, Q. X. et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 22, 2448–2453 (2010).
(
10.1002/adma.201000282
) / Adv. Mater. by QX Lai (2010) -
Catalan, G. Progress in perovskite nickelate research. Phase Transit. 81, 729–749 (2008).
(
10.1080/01411590801992463
) / Phase Transit. by G Catalan (2008) -
Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).
(
10.1126/science.1202647
) / Science by AV Boris (2011) -
Nikulin, I. V., Novojilov, M. A., Kaul, A. R., Mudretsova, S. N. & Kondrashov, S. V. Oxygen nonstoichiometry of NdNiO3-delta and SmNiO3-delta . Mater. Res. Bull. 39, 775–791 (2004).
(
10.1016/j.materresbull.2004.02.005
) / Mater. Res. Bull. by IV Nikulin (2004) -
Mahesh, R., Kannan, K. R. & Rao, C. N. R. Electrochemical synthesis of ferromagnetic Lamno3 and metallic Ndnio3. J. Solid State Chem. 114, 294–296 (1995).
(
10.1006/jssc.1995.1044
) / J. Solid State Chem. by R Mahesh (1995) -
Tiwari, A. & Rajeev, K. P. Effect of oxygen stoichiometry on the electrical resistivity behaviour of NdNiO3-delta. Solid State Commun. 109, 119–124 (1999).
(
10.1016/S0038-1098(98)00515-8
) / Solid State Commun. by A Tiwari (1999) -
Conchon, F. et al. The role of strain-induced structural changes in the metal-insulator transition in epitaxial SmNiO3 films. J. Phys. Condens. Mat. 20, 145216(1)–145216(7) (2008).
(
10.1088/0953-8984/20/14/145216
) / J. Phys. Condens. Mat. by F Conchon (2008) -
Conchon, F. et al. Effect of tensile and compressive strains on the transport properties of SmNiO3 layers epitaxially grown on (001) SrTiO3 and LaAlO3 substrates. Appl. Phys. Lett. 91, 192110 (2007).
(
10.1063/1.2800306
) / Appl. Phys. Lett. by F Conchon (2007) -
Tiwari, A., Jin, C. & Narayan, J. Strain-induced tuning of metal-insulator transition in NdNiO3 . Appl. Phys. Lett. 80, 4039–4041 (2002).
(
10.1063/1.1480475
) / Appl. Phys. Lett. by A Tiwari (2002) -
Asanuma, S. et al. Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Appl. Phys. Lett. 97, 142110 (2010).
(
10.1063/1.3496458
) / Appl. Phys. Lett. by S Asanuma (2010) -
Ha, S. D., Vetter, U., Shi, J. & Ramanathan, S. Electrostatic gating of metallic and insulating phases in SmNiO3 ultrathin films. Appl. Phys. Lett. 102, 183102 (2013).
(
10.1063/1.4804142
) / Appl. Phys. Lett. by SD Ha (2013) -
Scherwitzl, R. et al. Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 5517–5520 (2010).
(
10.1002/adma.201003241
) / Adv. Mater. by R Scherwitzl (2010) -
Scherwitzl, R., Zubko, P., Lichtensteiger, C. & Triscone, J. M. Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3 . Appl. Phys. Lett. 95, 222114 (2009).
(
10.1063/1.3269591
) / Appl. Phys. Lett. by R Scherwitzl (2009) -
Liao, Z., Gao, P., Bai, X., Chen, D. & Zhang, J. Evidence for electric-field-driven migration and diffusion of oxygen vacancies in Pr0.7Ca0.3MnO3 . J. Appl. Phys. 111, 114506 (2012).
(
10.1063/1.4724333
) / J. Appl. Phys. by Z Liao (2012) -
Li, K. T. & Lo, V. C. Simulation of oxygen vacancy induced phenomena in ferroelectric thin films. J. Appl. Phys. 97, 034107 (2005).
(
10.1063/1.1846947
) / J. Appl. Phys. by KT Li (2005) -
Nian, Y. B., Strozier, J., Wu, N. J., Chen, X. & Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403(1)–146403(4) (2007).
(
10.1103/PhysRevLett.98.146403
) / Phys. Rev. Lett. by YB Nian (2007) -
Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008).
(
10.1016/S1369-7021(08)70119-6
) / Mater. Today by A Sawa (2008) -
Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).
(
10.1126/science.1230512
) / Science by J Jeong (2013) -
AlNashef, I. M., Leonard, M. L., Kittle, M. C., Matthews, M. A. & Weidner, J. W. Electrochemical generation of superoxide in room-temperature ionic liquids. Electrochem. Solid-State Lett. 4, D16–D18 (2001).
(
10.1149/1.1406997
) / Electrochem. Solid-State Lett. by IM AlNashef (2001) -
Buzzeo, M. C. et al. Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: one-electron reduction to form superoxide. steady-state and transient behavior in the same cyclic voltammogram resulting from widely different diffusion coefficients of oxygen and superoxide. J. Phys. Chem. A 107, 8872–8878 (2003).
(
10.1021/jp0304834
) / J. Phys. Chem. A by MC Buzzeo (2003) -
Katayama, Y., Onodera, H., Yamagata, M. & Miura, T. Electrochemical reduction of oxygen in some hydrophobic room-temperature molten salt systems. J. Electrochem. Soc. 151, A59–A63 (2004).
(
10.1149/1.1626669
) / J. Electrochem. Soc. by Y Katayama (2004) -
Hapiot, P. & Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108, 2238–2264 (2008).
(
10.1021/cr0680686
) / Chem. Rev. by P Hapiot (2008) -
Medarde, M. L. Structural, magnetic and electronic properties of RNiO3 perovskites (R equals rare earth). J. Phys. Condens. Mat. 9, 1679–1707 (1997).
(
10.1088/0953-8984/9/8/003
) / J. Phys. Condens. Mat. by ML Medarde (1997) -
Jaramillo, R., Schoofs, F., Ha, S. D. & Ramanathan, S. High pressure synthesis of SmNiO3 thin films and implications for thermodynamics of the nickelates. J. Mater. Chem. C 1, 2455–2462 (2013).
(
10.1039/c3tc00844d
) / J. Mater. Chem. C by R Jaramillo (2013) -
Kharton, V. V., Marques, F. M. B. & Atkinson, A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174, 135–149 (2004).
(
10.1016/j.ssi.2004.06.015
) / Solid State Ionics by VV Kharton (2004) -
Abazari, M., Tsuchiya, M. & Ramanathan, S. High-temperature electrical conductivity measurements on nanostructured yttria-doped ceria thin films in ozone. J. Am. Ceram. Soc. 95, 312–317 (2012).
(
10.1111/j.1551-2916.2011.04786.x
) / J. Am. Ceram. Soc. by M Abazari (2012) -
Switzer, E. E. et al. Oxygen reduction reaction in ionic liquids: the addition of protic species. J. Phys. Chem. C 117, 8683–8690 (2013).
(
10.1021/jp400845u
) / J. Phys. Chem. C by EE Switzer (2013) -
Walsh, D. A., Ejigu, A., Smith, J. & Licence, P. Kinetics and mechanism of oxygen reduction in a protic ionic liquid. Phys. Chem. Chem. Phys. 15, 7548–7554 (2013).
(
10.1039/c3cp44669g
) / Phys. Chem. Chem. Phys. by DA Walsh (2013) -
Amboage, M., Hanfland, M., Alonso, J. A. & Martinez-Lope, M. J. High pressure structural study of SmNiO3. J. Phys. Condens. Mat. 17, S783–S788 (2005).
(
10.1088/0953-8984/17/11/006
) / J. Phys. Condens. Mat. by M Amboage (2005) -
Torriss, B., Chaker, M. & Margot, J. Electrical and Fourier transform infrared properties of epitaxial SmNiO3 tensile strained thin film. Appl. Phys. Lett. 101, 091908 (2012).
(
10.1063/1.4748982
) / Appl. Phys. Lett. by B Torriss (2012) -
Ramanathan, S. Interface-mediated ultrafast carrier conduction in oxide thin films and superlattices for energy. J. Vac. Sci. Technol. A 27, 1126–1134 (2009).
(
10.1116/1.3186616
) / J. Vac. Sci. Technol. A by S Ramanathan (2009) -
Zhou, Y. & Ramanathan, S. Relaxation dynamics of ionic liquid-VO2 interfaces and influence in electric double-layer transistors. J. Appl. Phys. 111, 084508 (2012).
(
10.1063/1.4704689
) / J. Appl. Phys. by Y Zhou (2012)
Dates
Type | When |
---|---|
Created | 11 years, 10 months ago (Oct. 31, 2013, 9:14 a.m.) |
Deposited | 1 year, 3 months ago (May 19, 2024, 12:34 a.m.) |
Indexed | 50 minutes ago (Sept. 7, 2025, 12:26 p.m.) |
Issued | 11 years, 10 months ago (Oct. 31, 2013) |
Published | 11 years, 10 months ago (Oct. 31, 2013) |
Published Online | 11 years, 10 months ago (Oct. 31, 2013) |
@article{Shi_2013, title={A correlated nickelate synaptic transistor}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3676}, DOI={10.1038/ncomms3676}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Shi, Jian and Ha, Sieu D. and Zhou, You and Schoofs, Frank and Ramanathan, Shriram}, year={2013}, month=oct }