Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Shi, J., Ha, S. D., Zhou, Y., Schoofs, F., & Ramanathan, S. (2013). A correlated nickelate synaptic transistor. Nature Communications, 4(1).

Authors 5
  1. Jian Shi (first)
  2. Sieu D. Ha (additional)
  3. You Zhou (additional)
  4. Frank Schoofs (additional)
  5. Shriram Ramanathan (additional)
References 59 Referenced 473
  1. Boahen, K. A. Neuromorphic microchips. Sci. Am. 292, 56–63 (2005). (10.1038/scientificamerican0505-56) / Sci. Am. by KA Boahen (2005)
  2. Ha, S. D. & Ramanathan, S. Adaptive oxide electronics: a review. J. Appl. Phys. 110, 071101 (2011). (10.1063/1.3640806) / J. Appl. Phys. by SD Ha (2011)
  3. Hopfield, J. J. Brain, neural networks, and computation. Rev. Mod. Phys. 71, S431–S437 (1999). (10.1103/RevModPhys.71.S431) / Rev. Mod. Phys. by JJ Hopfield (1999)
  4. Chua, L. O. & Yang, L. Cellular neural networks - applications. IEEE T Circuits Syst 35, 1273–1290 (1988). (10.1109/31.7601) / IEEE T Circuits Syst by LO Chua (1988)
  5. Aihara, K., Takabe, T. & Toyoda, M. Chaotic neural networks. Phys. Lett. A 144, 333–340 (1990). (10.1016/0375-9601(90)90136-C) / Phys. Lett. A by K Aihara (1990)
  6. Snider, G. S. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202 (2007). (10.1088/0957-4484/18/36/365202) / Nanotechnology by GS Snider (2007)
  7. Alibart, F. et al. An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20, 330–337 (2010). (10.1002/adfm.200901335) / Adv. Funct. Mater. by F Alibart (2010)
  8. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano. Lett. 10, 1297–1301 (2010). (10.1021/nl904092h) / Nano. Lett. by SH Jo (2010)
  9. Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012). (10.1021/nl201040y) / Nano Lett. by D Kuzum (2012)
  10. Mahowald, M. & Douglas, R. A silicon neuron. Nature 354, 515–518 (1991). (10.1038/354515a0) / Nature by M Mahowald (1991)
  11. Pershin, Y. V., La Fontaine, S. & Di Ventra, M. Memristive model of amoeba learning. Phys. Rev. E 80, 021926 (2009). (10.1103/PhysRevE.80.021926) / Phys. Rev. E by YV Pershin (2009)
  12. Snider, G. S. Spike-timing-dependent learning in memristive nanodevices. PR. INT. SYMP. NANOARCH 2008, 85–92 (2008). / PR. INT. SYMP. NANOARCH by GS Snider (2008)
  13. Sejnowski, T. & Delbruck, T. The language of the brain. Sci. Am. 307, 54–59 (2012). (10.1038/scientificamerican1012-54) / Sci. Am. by T Sejnowski (2012)
  14. Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010). (10.1021/cr900040x) / Chem. Rev. by S Raoux (2010)
  15. Waser, R. Resistive non-volatile memory devices. Microelectron. Eng. 86, 1925–1928 (2009). (10.1016/j.mee.2009.03.132) / Microelectron. Eng. by R Waser (2009)
  16. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011). (10.1038/nmat3054) / Nat. Mater. by T Ohno (2011)
  17. Chang, T., Jo, S. H. & Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011). (10.1021/nn202983n) / ACS Nano by T Chang (2011)
  18. Shima, H. et al. Resistance switching in the metal deficient-type oxides: NiO and CoO. Appl. Phys. Lett. 91, 012901 (2007). (10.1063/1.2753101) / Appl. Phys. Lett. by H Shima (2007)
  19. Zhong, N., Shima, H. & Akinaga, H. Switchable Pt/TiO2-x/Pt schottky diodes. Jpn. J. Appl. Phys. 48, 05DF03 (2009). (10.1143/JJAP.48.05DF03) / Jpn. J. Appl. Phys. by N Zhong (2009)
  20. Hebb, D. O., Martinez, J. L. & Glickman, S. E. The organization of behavior - a neuropsychological theory. Contemp. Psychol. 39, 1018–1020 (1994). (10.1037/034206) / Contemp. Psychol. by DO Hebb (1994)
  21. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000). (10.1038/81453) / Nat. Neurosci. by LF Abbott (2000)
  22. Dan, Y. & Poo, M. M. Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 (2004). (10.1016/j.neuron.2004.09.007) / Neuron by Y Dan (2004)
  23. Diorio, C., Hasler, P., Minch, A. & Mead, C. A. A single-transistor silicon synapse. IEEE T. Electron. Dev. 43, 1972–1980 (1996). (10.1109/16.543035) / IEEE T. Electron. Dev. by C Diorio (1996)
  24. Ishiwara, H. Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights. Jpn. J. Appl. Phys. 32, 442–446 (1993). (10.1143/JJAP.32.442) / Jpn. J. Appl. Phys. by H Ishiwara (1993)
  25. Ishiwara, H., Aoyama, Y., Okada, S., Shimamura, C. & Tokumitsu, E. Ferroelectric neuron circuits with adaptive-learning function. Comput. Electr. Eng. 23, 431–438 (1997). (10.1016/S0045-7906(97)00029-3) / Comput. Electr. Eng. by H Ishiwara (1997)
  26. Nishitani, Y., Kaneko, Y., Ueda, M., Morie, T. & Fujii, E. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 111, 124108 (2012). (10.1063/1.4729915) / J. Appl. Phys. by Y Nishitani (2012)
  27. Thakoor, S., Moopenn, A., Daud, T. & Thakoor, A. P. Solid-state thin-film memistor for electronic neural networks. J. Appl. Phys. 67, 3132–3135 (1990). (10.1063/1.345390) / J. Appl. Phys. by S Thakoor (1990)
  28. Lai, Q. X. et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 22, 2448–2453 (2010). (10.1002/adma.201000282) / Adv. Mater. by QX Lai (2010)
  29. Catalan, G. Progress in perovskite nickelate research. Phase Transit. 81, 729–749 (2008). (10.1080/01411590801992463) / Phase Transit. by G Catalan (2008)
  30. Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011). (10.1126/science.1202647) / Science by AV Boris (2011)
  31. Nikulin, I. V., Novojilov, M. A., Kaul, A. R., Mudretsova, S. N. & Kondrashov, S. V. Oxygen nonstoichiometry of NdNiO3-delta and SmNiO3-delta . Mater. Res. Bull. 39, 775–791 (2004). (10.1016/j.materresbull.2004.02.005) / Mater. Res. Bull. by IV Nikulin (2004)
  32. Mahesh, R., Kannan, K. R. & Rao, C. N. R. Electrochemical synthesis of ferromagnetic Lamno3 and metallic Ndnio3. J. Solid State Chem. 114, 294–296 (1995). (10.1006/jssc.1995.1044) / J. Solid State Chem. by R Mahesh (1995)
  33. Tiwari, A. & Rajeev, K. P. Effect of oxygen stoichiometry on the electrical resistivity behaviour of NdNiO3-delta. Solid State Commun. 109, 119–124 (1999). (10.1016/S0038-1098(98)00515-8) / Solid State Commun. by A Tiwari (1999)
  34. Conchon, F. et al. The role of strain-induced structural changes in the metal-insulator transition in epitaxial SmNiO3 films. J. Phys. Condens. Mat. 20, 145216(1)–145216(7) (2008). (10.1088/0953-8984/20/14/145216) / J. Phys. Condens. Mat. by F Conchon (2008)
  35. Conchon, F. et al. Effect of tensile and compressive strains on the transport properties of SmNiO3 layers epitaxially grown on (001) SrTiO3 and LaAlO3 substrates. Appl. Phys. Lett. 91, 192110 (2007). (10.1063/1.2800306) / Appl. Phys. Lett. by F Conchon (2007)
  36. Tiwari, A., Jin, C. & Narayan, J. Strain-induced tuning of metal-insulator transition in NdNiO3 . Appl. Phys. Lett. 80, 4039–4041 (2002). (10.1063/1.1480475) / Appl. Phys. Lett. by A Tiwari (2002)
  37. Asanuma, S. et al. Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Appl. Phys. Lett. 97, 142110 (2010). (10.1063/1.3496458) / Appl. Phys. Lett. by S Asanuma (2010)
  38. Ha, S. D., Vetter, U., Shi, J. & Ramanathan, S. Electrostatic gating of metallic and insulating phases in SmNiO3 ultrathin films. Appl. Phys. Lett. 102, 183102 (2013). (10.1063/1.4804142) / Appl. Phys. Lett. by SD Ha (2013)
  39. Scherwitzl, R. et al. Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 5517–5520 (2010). (10.1002/adma.201003241) / Adv. Mater. by R Scherwitzl (2010)
  40. Scherwitzl, R., Zubko, P., Lichtensteiger, C. & Triscone, J. M. Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3 . Appl. Phys. Lett. 95, 222114 (2009). (10.1063/1.3269591) / Appl. Phys. Lett. by R Scherwitzl (2009)
  41. Liao, Z., Gao, P., Bai, X., Chen, D. & Zhang, J. Evidence for electric-field-driven migration and diffusion of oxygen vacancies in Pr0.7Ca0.3MnO3 . J. Appl. Phys. 111, 114506 (2012). (10.1063/1.4724333) / J. Appl. Phys. by Z Liao (2012)
  42. Li, K. T. & Lo, V. C. Simulation of oxygen vacancy induced phenomena in ferroelectric thin films. J. Appl. Phys. 97, 034107 (2005). (10.1063/1.1846947) / J. Appl. Phys. by KT Li (2005)
  43. Nian, Y. B., Strozier, J., Wu, N. J., Chen, X. & Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403(1)–146403(4) (2007). (10.1103/PhysRevLett.98.146403) / Phys. Rev. Lett. by YB Nian (2007)
  44. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008). (10.1016/S1369-7021(08)70119-6) / Mater. Today by A Sawa (2008)
  45. Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013). (10.1126/science.1230512) / Science by J Jeong (2013)
  46. AlNashef, I. M., Leonard, M. L., Kittle, M. C., Matthews, M. A. & Weidner, J. W. Electrochemical generation of superoxide in room-temperature ionic liquids. Electrochem. Solid-State Lett. 4, D16–D18 (2001). (10.1149/1.1406997) / Electrochem. Solid-State Lett. by IM AlNashef (2001)
  47. Buzzeo, M. C. et al. Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: one-electron reduction to form superoxide. steady-state and transient behavior in the same cyclic voltammogram resulting from widely different diffusion coefficients of oxygen and superoxide. J. Phys. Chem. A 107, 8872–8878 (2003). (10.1021/jp0304834) / J. Phys. Chem. A by MC Buzzeo (2003)
  48. Katayama, Y., Onodera, H., Yamagata, M. & Miura, T. Electrochemical reduction of oxygen in some hydrophobic room-temperature molten salt systems. J. Electrochem. Soc. 151, A59–A63 (2004). (10.1149/1.1626669) / J. Electrochem. Soc. by Y Katayama (2004)
  49. Hapiot, P. & Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108, 2238–2264 (2008). (10.1021/cr0680686) / Chem. Rev. by P Hapiot (2008)
  50. Medarde, M. L. Structural, magnetic and electronic properties of RNiO3 perovskites (R equals rare earth). J. Phys. Condens. Mat. 9, 1679–1707 (1997). (10.1088/0953-8984/9/8/003) / J. Phys. Condens. Mat. by ML Medarde (1997)
  51. Jaramillo, R., Schoofs, F., Ha, S. D. & Ramanathan, S. High pressure synthesis of SmNiO3 thin films and implications for thermodynamics of the nickelates. J. Mater. Chem. C 1, 2455–2462 (2013). (10.1039/c3tc00844d) / J. Mater. Chem. C by R Jaramillo (2013)
  52. Kharton, V. V., Marques, F. M. B. & Atkinson, A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174, 135–149 (2004). (10.1016/j.ssi.2004.06.015) / Solid State Ionics by VV Kharton (2004)
  53. Abazari, M., Tsuchiya, M. & Ramanathan, S. High-temperature electrical conductivity measurements on nanostructured yttria-doped ceria thin films in ozone. J. Am. Ceram. Soc. 95, 312–317 (2012). (10.1111/j.1551-2916.2011.04786.x) / J. Am. Ceram. Soc. by M Abazari (2012)
  54. Switzer, E. E. et al. Oxygen reduction reaction in ionic liquids: the addition of protic species. J. Phys. Chem. C 117, 8683–8690 (2013). (10.1021/jp400845u) / J. Phys. Chem. C by EE Switzer (2013)
  55. Walsh, D. A., Ejigu, A., Smith, J. & Licence, P. Kinetics and mechanism of oxygen reduction in a protic ionic liquid. Phys. Chem. Chem. Phys. 15, 7548–7554 (2013). (10.1039/c3cp44669g) / Phys. Chem. Chem. Phys. by DA Walsh (2013)
  56. Amboage, M., Hanfland, M., Alonso, J. A. & Martinez-Lope, M. J. High pressure structural study of SmNiO3. J. Phys. Condens. Mat. 17, S783–S788 (2005). (10.1088/0953-8984/17/11/006) / J. Phys. Condens. Mat. by M Amboage (2005)
  57. Torriss, B., Chaker, M. & Margot, J. Electrical and Fourier transform infrared properties of epitaxial SmNiO3 tensile strained thin film. Appl. Phys. Lett. 101, 091908 (2012). (10.1063/1.4748982) / Appl. Phys. Lett. by B Torriss (2012)
  58. Ramanathan, S. Interface-mediated ultrafast carrier conduction in oxide thin films and superlattices for energy. J. Vac. Sci. Technol. A 27, 1126–1134 (2009). (10.1116/1.3186616) / J. Vac. Sci. Technol. A by S Ramanathan (2009)
  59. Zhou, Y. & Ramanathan, S. Relaxation dynamics of ionic liquid-VO2 interfaces and influence in electric double-layer transistors. J. Appl. Phys. 111, 084508 (2012). (10.1063/1.4704689) / J. Appl. Phys. by Y Zhou (2012)
Dates
Type When
Created 11 years, 10 months ago (Oct. 31, 2013, 9:14 a.m.)
Deposited 1 year, 3 months ago (May 19, 2024, 12:34 a.m.)
Indexed 50 minutes ago (Sept. 7, 2025, 12:26 p.m.)
Issued 11 years, 10 months ago (Oct. 31, 2013)
Published 11 years, 10 months ago (Oct. 31, 2013)
Published Online 11 years, 10 months ago (Oct. 31, 2013)
Funders 0

None

@article{Shi_2013, title={A correlated nickelate synaptic transistor}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3676}, DOI={10.1038/ncomms3676}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Shi, Jian and Ha, Sieu D. and Zhou, You and Schoofs, Frank and Ramanathan, Shriram}, year={2013}, month=oct }