Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractFrequency references are indispensable to radio, microwave and time keeping systems, with far reaching applications in navigation, communication, remote sensing and basic science. Over the past decade, there has been an optical revolution in time keeping and microwave generation that promises to ultimately impact all of these areas. Indeed, the most precise clocks and lowest noise microwave signals are now based on a laser with short-term stability derived from a reference cavity. In spite of the tremendous progress, these systems remain essentially laboratory devices and there is interest in their miniaturization, even towards on-chip systems. Here we describe a chip-based optical reference cavity that uses spatial averaging of thermorefractive noise to enhance resonator stability. Stabilized fibre lasers exhibit relative Allan deviation of 3.9 × 10−13 at 400 μs averaging time and an effective linewidth <100 Hz by achieving over 26 dB of phase-noise reduction.

Authors 6
  1. Hansuek Lee (first)
  2. Myoung-Gyun Suh (additional)
  3. Tong Chen (additional)
  4. Jiang Li (additional)
  5. Scott A. Diddams (additional)
  6. Kerry J. Vahala (additional)
References 47 Referenced 108
  1. Abbott, B. P. et al. LIGO: the laser interferometer gravitational-wave observatory. Rep. Prog. Phys. 72, 076901 (2009). (10.1088/0034-4885/72/7/076901) / Rep. Prog. Phys. by BP Abbott (2009)
  2. Diddams, S. A. et al. An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001). (10.1126/science.1061171) / Science by SA Diddams (2001)
  3. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011). (10.1038/nphoton.2011.121) / Nat. Photon. by TM Fortier (2011)
  4. Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999). (10.1103/PhysRevLett.82.3799) / Phys. Rev. Lett. by BC Young (1999)
  5. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photon. 6, 687–692 (2012). (10.1038/nphoton.2012.217) / Nat. Photon. by T Kessler (2012)
  6. Jiang, Y. Y. et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat. Photon. 5, 158–161 (2011). (10.1038/nphoton.2010.313) / Nat. Photon. by YY Jiang (2011)
  7. Sellin, P. B., Strickland, N. M., Carlsten, J. L. & Cone, R. L. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning. Opt. Lett. 24, 1038–1040 (1999). (10.1364/OL.24.001038) / Opt. Lett. by PB Sellin (1999)
  8. Thorpe, M. J., Rippe, L., Fortier, T. M., Kirchner, M. S. & Rosenband, T. Frequency stabilization to 6 × 10−16 via spectral-hole burning. Nat. Photon. 8, 688–693 (2011). (10.1038/nphoton.2011.215) / Nat. Photon. by MJ Thorpe (2011)
  9. Kefelian, F., Jiang, H., Lemonde, P. & Santarelli, G. Ultralow-frequency-noise stabilization of a laser by locking to an optical fibre-delay line. Opt. Lett. 34, 914–916 (2009). (10.1364/OL.34.000914) / Opt. Lett. by F Kefelian (2009)
  10. Numata, K., Kemery, A. & Camp, J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004). (10.1103/PhysRevLett.93.250602) / Phys. Rev. Lett. by K Numata (2004)
  11. Harry, G. M. et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quant. Grav. 19, 897–917 (2002). (10.1088/0264-9381/19/5/305) / Class. Quant. Grav. by GM Harry (2002)
  12. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003). (10.1038/nature01371) / Nature by DK Armani (2003)
  13. Papp, S. B. & Diddams, S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 84, 053833 (2011). (10.1103/PhysRevA.84.053833) / Phys. Rev. A by SB Papp (2011)
  14. Lee, H. et al. Chemically etched, ulta-high-Q resonator on a chip. Nat. Photon. 6, 369–373 (2012). (10.1038/nphoton.2012.109) / Nat. Photon. by H Lee (2012)
  15. Grudinin, I. S., Ilchenko, V. S. & Maleki, L. Ultrahigh optical Q factors of crystalline resonators in the linear regime. Phys. Rev. A 74, 063806 (2006). (10.1103/PhysRevA.74.063806) / Phys. Rev. A by IS Grudinin (2006)
  16. Grudinin, I. S., Matsko, A. B. & Maleki, L. On the fundamental limits of Q factor of crystalline dielectric resonators. Opt. Exp. 15, 3390–3395 (2007). (10.1364/OE.15.003390) / Opt. Exp. by IS Grudinin (2007)
  17. Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S. & Maleki, L. Optical resonators with ten million finesse. Opt. Exp. 15, 6768–6773 (2007). (10.1364/OE.15.006768) / Opt. Exp. by AA Savchenkov (2007)
  18. Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B 21, 697–705 (2004). (10.1364/JOSAB.21.000697) / J. Opt. Soc. Am. B by ML Gorodetsky (2004)
  19. Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. I. fundamental limitations. J. Opt. Soc. Am. B 24, 1324–1335 (2007). (10.1364/JOSAB.24.001324) / J. Opt. Soc. Am. B by AB Matsko (2007)
  20. Chijioke, A., Chen, Q., Nevsky, A. Y. & Schiller, S. Thermal noise of whispering-gallery resonators. Phys. Rev. A 85, 053814 (2012). (10.1103/PhysRevA.85.053814) / Phys. Rev. A by A Chijioke (2012)
  21. Alnis, J. et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A 84, 011804 (2011). (10.1103/PhysRevA.84.011804) / Phys. Rev. A by J Alnis (2011)
  22. Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. II. stabilization. J. Opt. Soc. Am. B 24, 2988–2997 (2007). (10.1364/JOSAB.24.002988) / J. Opt. Soc. Am. B by AA Savchenkov (2007)
  23. Strekalov, D. V., Thompson, R. J., Baumgartel, L. M., Grudinin, I. S. & Yu, N. Temperature measurement and stabilization in a birefringent whispering gallery mode resonator. Opt. Exp. 19, 14495–14501 (2011). (10.1364/OE.19.014495) / Opt. Exp. by DV Strekalov (2011)
  24. Fescenko, I. et al. Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator. Opt. Exp. 20, 19185–19193 (2012). (10.1364/OE.20.019185) / Opt. Exp. by I Fescenko (2012)
  25. Sprenger, B., Schwefel, H. G. L., Lu, Z. H., Svitlov, S. & Wang, L. J. CaF2 whispering-gallery-mode-resonator stabilized-narrow-linewidth laser. Opt. Lett. 35, 2870–2872 (2010). (10.1364/OL.35.002870) / Opt. Lett. by B Sprenger (2010)
  26. Collodo, M. C. et al. Sub-khz lasing of a CaF2 whispering gallery mode resonator stabilized fibre ring laser. Preprint at http://arxiv.org/abs/1208.0245 (2012). (10.1364/CLEO_SI.2012.CTh3A.5)
  27. Chembo, Y. K., Baumgartel, L. M. & Yu, N. Toward whispering-gallery-mode disk resonators for metrological applications. InSPIE News Sensing and Measurement (2012), doi:10.1117/2.1201202.004034. (10.1117/2.1201202.004034)
  28. Chembo, Y. K., Baumgartel, L. M. & Yu, N. Exploring the frequency stability limits of whispering gallery mode resonators for metrological applications. in Proc. SPIE 8236, Laser Resonators, Microresonators, and Beam Control XV, 82360Q doi:10.1117/12.908990 (2012). (10.1117/12.908990)
  29. Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983). (10.1007/BF00702605) / Appl. Phys. B by RWP Drever (1983)
  30. Xu, D.-X. et al. Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters. Opt. Exp. 18, 1937–1945 (2010). (10.1364/OE.18.001937) / Opt. Exp. by D-X Xu (2010)
  31. Lee, H., Chen, T., Li, J., Painter, O. & Vahala, K. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun. 3, 867 (2012). (10.1038/ncomms1876) / Nat. Commun. by H Lee (2012)
  32. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008). (10.1126/science.1156032) / Science by TJ Kippenberg (2008)
  33. Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fibre taper to silica-microsphere whispering gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000). (10.1103/PhysRevLett.85.74) / Phys. Rev. Lett. by M Cai (2000)
  34. Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Observation of critical coupling in a fibre taper to silica-microsphere whispering gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000). (10.1103/PhysRevLett.85.74) / Phys. Rev. Lett. by SM Spillane (2000)
  35. Chen, T., Lee, H., Li, J. & Vahala, K. A general design algorithm for low optical loss adiabatic connections in waveguides. Opt. Exp. 20, 22819–22829 (2012). (10.1364/OE.20.022819) / Opt. Exp. by T Chen (2012)
  36. Rokhsari, H. & Vahala, K. J. Observation of kerr nonlinearity in microcavities at room temperature. Opt. Lett. 427–429 (2005). (10.1364/OL.30.000427)
  37. Hjelme, D. R., Mickelson, A. R. & Beausoleil, R. G. Semiconductor laser stabilization by external optical feedback. J. Qunt. Electron. 27, 352–372 (1991). (10.1109/3.81333) / J. Qunt. Electron. by DR Hjelme (1991)
  38. Barnes, J. A. et al. Characterization of frequency stability. IEEE Trans. Instrum. Meas. 20, 105–120 (1971). (10.1109/TIM.1971.5570702) / IEEE Trans. Instrum. Meas. by JA Barnes (1971)
  39. Hänsch, T. W. & Couillaud, B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980). (10.1016/0030-4018(80)90069-3) / Opt. Commun. by TW Hänsch (1980)
  40. Schliesser, A., Riviere, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008). (10.1038/nphys939) / Nat. Phys. by A Schliesser (2008)
  41. Hati, A. et al. Ultra-low-noise regenerative frequency divider for high-spectral-purity RF signal generation. InFrequency Control Symposium (FCS), 2012 IEEE International ((2012). (10.1109/FCS.2012.6243683)
  42. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007). (10.1038/nature06401) / Nature by P Del’Haye (2007)
  43. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011). (10.1126/science.1193968) / Science by TJ Kippenberg (2011)
  44. Ip, E., Lau, A., Barros, D. & Kahn, J. Coherent detection in optical fibre systems. Opt. Exp. 16, 753–791 (2008). (10.1364/OE.16.000753) / Opt. Exp. by E Ip (2008)
  45. Koizumi, Y. et al. 256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz. Photon. Technol. Lett. 22, 185–187 (2010). (10.1109/LPT.2009.2038892) / Photon. Technol. Lett. by Y Koizumi (2010)
  46. Karlsson, C. J., Olsson, F. A. A., Letalick, D. & Harris, M. All-fibre multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements. Appl. Opt. 39, 3716–3726 (2000). (10.1364/AO.39.003716) / Appl. Opt. by CJ Karlsson (2000)
  47. Rafac, R. J. et al. Sub-dekahertz ultraviolet spectroscopy of 199Hg+. Phys. Rev. Lett. 85, 2462–2465 (2000). (10.1103/PhysRevLett.85.2462) / Phys. Rev. Lett. by RJ Rafac (2000)
Dates
Type When
Created 11 years, 11 months ago (Sept. 17, 2013, 6:02 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:29 p.m.)
Indexed 1 month ago (July 30, 2025, 11:07 a.m.)
Issued 11 years, 11 months ago (Sept. 17, 2013)
Published 11 years, 11 months ago (Sept. 17, 2013)
Published Online 11 years, 11 months ago (Sept. 17, 2013)
Funders 0

None

@article{Lee_2013, title={Spiral resonators for on-chip laser frequency stabilization}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3468}, DOI={10.1038/ncomms3468}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Lee, Hansuek and Suh, Myoung-Gyun and Chen, Tong and Li, Jiang and Diddams, Scott A. and Vahala, Kerry J.}, year={2013}, month=sep }