Bibliography
Lu, J., Lei, Y., Lau, K. C., Luo, X., Du, P., Wen, J., Assary, R. S., Das, U., Miller, D. J., Elam, J. W., Albishri, H. M., El-Hady, D. A., Sun, Y.-K., Curtiss, L. A., & Amine, K. (2013). A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nature Communications, 4(1).
Authors
15
- Jun Lu (first)
- Yu Lei (additional)
- Kah Chun Lau (additional)
- Xiangyi Luo (additional)
- Peng Du (additional)
- Jianguo Wen (additional)
- Rajeev S. Assary (additional)
- Ujjal Das (additional)
- Dean J. Miller (additional)
- Jeffrey W. Elam (additional)
- Hassan M. Albishri (additional)
- D Abd El-Hady (additional)
- Yang-Kook Sun (additional)
- Larry A. Curtiss (additional)
- Khalil Amine (additional)
References
41
Referenced
387
-
Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).
(
10.1021/jz1005384
) / J. Phys. Chem. Lett. by G Girishkumar (2010) -
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011).
(
10.1038/nmat3191
) / Nat. Mater. by PG Bruce (2011) -
Shao, Y. et al. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal. 2, 844–857 (2012).
(
10.1021/cs300036v
) / ACS Catal. by Y Shao (2012) -
Christensen, J. et al. A critical review of li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2011).
(
10.1149/2.086202jes
) / J. Electrochem. Soc. by J Christensen (2011) -
Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).
(
10.1149/1.1836378
) / J. Electrochem. Soc. by KM Abraham (1996) -
Yang, J. et al. Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery. Phys. Chem. Chem. Phys 15, 3764–3771 (2013).
(
10.1039/c3cp00069a
) / Phys. Chem. Chem. Phys by J Yang (2013) -
Oh, S. H. & Nazar, L. F. Oxide catalysts for rechargeable high-capacity Li–O2 batteries. Adv. Energy Mater. 2, 903–910 (2012).
(
10.1002/aenm.201200018
) / Adv. Energy Mater. by SH Oh (2012) -
Zhang, Z. et al. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535–25542 (2011).
(
10.1021/jp2087412
) / J. Phys. Chem. C by Z Zhang (2011) -
Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012).
(
10.1126/science.1223985
) / Science by Z Peng (2012) -
Dathar, G. K. P., Shelton, W. A. & Xu, Y. Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium. J. Phys. Chem. Lett. 3, 891–895 (2012).
(
10.1021/jz300142y
) / J. Phys. Chem. Lett. by GKP Dathar (2012) -
Qin, Y. et al. In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries. Energy Environ. Sci. 6, 519–531 (2013).
(
10.1039/c2ee23621d
) / Energy Environ. Sci. by Y Qin (2013) -
Debart, A. l., Bao, J., Armstrong, G. & Bruce, P. G. An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J. Power Sour 174, 1177–1182 (2007).
(
10.1016/j.jpowsour.2007.06.180
) / J. Power Sour by Al Debart (2007) -
Debart, A., Paterson, A. J., Bao, J. & Bruce, P. G. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521–4524 (2008).
(
10.1002/anie.200705648
) / Angew. Chem. Int. Ed. by A Debart (2008) -
Lu, Y.-C. et al. Platinum gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).
(
10.1021/ja1036572
) / J. Am. Chem. Soc. by Y-C Lu (2010) -
Trahey, L. et al. Synthesis, characterization, and structural modeling of high-capacity, dual functioning MnO2 electrode/electrocatalysts for Li-O2 cells. Adv. Energy Mater. 3, 75–84 (2013).
(
10.1002/aenm.201200037
) / Adv. Energy Mater. by L Trahey (2013) -
Freunberger, S. A. et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).
(
10.1021/ja2021747
) / J. Am. Chem. Soc. by SA Freunberger (2011) -
Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargaeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).
(
10.5796/electrochemistry.78.403
) / Electrochemistry by F Mizuno (2010) -
Black, R. et al. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc 134, 2902–2905 (2012).
(
10.1021/ja2111543
) / J. Am. Chem. Soc by R Black (2012) -
McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous lithium-O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).
(
10.1021/ja207229n
) / J. Am. Chem. Soc. by BD McCloskey (2011) -
Black, R., Lee, J.-H., Adams, B., Mims, C. A. & Nazar, L. F. The role of catalysts and peroxide oxidation in lithium–oxygen batteries. Angew. Chem. Int. Ed. 125, 410–414 (2013).
(
10.1002/ange.201205354
) / Angew. Chem. Int. Ed. by R Black (2013) -
Radin, M. D., Rodriguez, J. F., Tian, F. & Siegel, D. J. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093–1103 (2012).
(
10.1021/ja208944x
) / J. Am. Chem. Soc. by MD Radin (2012) -
Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O(2) batteries. J. Chem. Phys. 135, 214704–214714 (2011).
(
10.1063/1.3663385
) / J. Chem. Phys. by V Viswanathan (2011) -
Ong, S. P., Mo, Y. & Ceder, G. Low hole polaron migration barrier in lithium peroxide. Phys. Rev. B 85, 081105 (2012).
(
10.1103/PhysRevB.85.081105
) / Phys. Rev. B by SP Ong (2012) -
McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).
(
10.1021/jz300243r
) / J. Phys. Chem. Lett. by BD McCloskey (2012) -
Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).
(
10.1021/ja310258x
) / J. Am. Chem. Soc. by MM Ottakam Thotiyl (2013) -
Hummelshoj, J. S., Luntz, A. C. & Norskov, J. K. Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J. Chem. Phys. 138, 034703–034712 (2013).
(
10.1063/1.4773242
) / J. Chem. Phys. by JS Hummelshoj (2013) -
Miikkulainen, V., Leskela, M., Ritala, M. & Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J. Appl. Phys. 113, 021301–021101 (2013).
(
10.1063/1.4757907
) / J. Appl. Phys. by V Miikkulainen (2013) -
Elam, J. W., Routkevitch, D., Mardilovich, P. P. & George, S. M. Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem. Mater. 15, 3507–3517 (2003).
(
10.1021/cm0303080
) / Chem. Mater. by JW Elam (2003) -
Shin, H., Jeong, D. K., Lee, J., Sung, M. M. & Kim, J. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv. Mater. 16, 1197–1200 (2004).
(
10.1002/adma.200306296
) / Adv. Mater. by H Shin (2004) -
Chen, P. et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano. Lett. 4, 1333–1337 (2004).
(
10.1021/nl0494001
) / Nano. Lett. by P Chen (2004) -
Feng, H., Libera, J. A., Stair, P. C., Miller, J. T. & Elam, J. W. Subnanometer palladium particles synthesized by atomic layer deposition. ACS Catal. 1, 665–673 (2011).
(
10.1021/cs2000957
) / ACS Catal. by H Feng (2011) -
Lu, J. & Stair, P. C. Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles. Angew. Chem. Int. Ed. 49, 2547–2551 (2010).
(
10.1002/anie.200907168
) / Angew. Chem. Int. Ed. by J Lu (2010) -
Christensen, S. T. et al. Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition. Small 5, 750–757 (2009).
(
10.1002/smll.200801920
) / Small by ST Christensen (2009) -
Feng, H., Elam, J. W., Libera, J. A., Setthapun, W. & Stair, P. C. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition. Chem. Mater. 22, 3133–3142 (2010).
(
10.1021/cm100061n
) / Chem. Mater. by H Feng (2010) -
Wang, X., Tabakman, S. M. & Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008).
(
10.1021/ja8023059
) / J. Am. Chem. Soc. by X Wang (2008) -
Xuan, Y. et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101–013103 (2008).
(
10.1063/1.2828338
) / Appl. Phys. Lett. by Y Xuan (2008) -
Gong, B. & Parsons, G. N. Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition. J. Mat. Chem. 22, 15672–15682 (2012).
(
10.1039/c2jm32343e
) / J. Mat. Chem. by B Gong (2012) -
Assary, R. S. et al. The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6, 51–55 (2013).
(
10.1002/cssc.201200810
) / ChemSusChem by RS Assary (2013) -
Mitchell, R. R., Gallant, B. M., Thompson, C. V. & Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 4, 2952–2958 (2011).
(
10.1039/c1ee01496j
) / Energy Environ. Sci. by RR Mitchell (2011) -
Lu, Y. et al. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344–348 (2004).
(
10.1016/j.cplett.2004.05.029
) / Chem. Phys. Lett. by Y Lu (2004) -
Assary, R. S., Lau, K. C., Amine, K., Sun, S.-K. & Curtiss, L. A. Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li-O2 batteries. J. Phys. Chem. C 117, 8041–8090 (2013).
(
10.1021/jp400229n
) / J. Phys. Chem. C by RS Assary (2013)
Dates
Type | When |
---|---|
Created | 11 years, 11 months ago (Aug. 29, 2013, 6:26 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 8:36 p.m.) |
Indexed | 5 days, 7 hours ago (Aug. 23, 2025, 1:09 a.m.) |
Issued | 11 years, 11 months ago (Aug. 29, 2013) |
Published | 11 years, 11 months ago (Aug. 29, 2013) |
Published Online | 11 years, 11 months ago (Aug. 29, 2013) |
@article{Lu_2013, title={A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3383}, DOI={10.1038/ncomms3383}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Lu, Jun and Lei, Yu and Lau, Kah Chun and Luo, Xiangyi and Du, Peng and Wen, Jianguo and Assary, Rajeev S. and Das, Ujjal and Miller, Dean J. and Elam, Jeffrey W. and Albishri, Hassan M. and El-Hady, D Abd and Sun, Yang-Kook and Curtiss, Larry A. and Amine, Khalil}, year={2013}, month=aug }