Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Park, G.-S., Kim, Y. B., Park, S. Y., Li, X. S., Heo, S., Lee, M.-J., Chang, M., Kwon, J. H., Kim, M., Chung, U.-I., Dittmann, R., Waser, R., & Kim, K. (2013). In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure. Nature Communications, 4(1).

Authors 13
  1. Gyeong-Su Park (first)
  2. Young Bae Kim (additional)
  3. Seong Yong Park (additional)
  4. Xiang Shu Li (additional)
  5. Sung Heo (additional)
  6. Myoung-Jae Lee (additional)
  7. Man Chang (additional)
  8. Ji Hwan Kwon (additional)
  9. M. Kim (additional)
  10. U-In Chung (additional)
  11. Regina Dittmann (additional)
  12. Rainer Waser (additional)
  13. Kinam Kim (additional)
References 41 Referenced 316
  1. Ielmini, D., Nardi, F. & Cagli, C. Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices 58, 3246–3253 (2011). (10.1109/TED.2011.2161088) / IEEE Trans. Electron Devices by D Ielmini (2011)
  2. Fujisaki, Y. Current status of nonvolatile semiconductor memory technology. Jpn J. Appl. Phys. 49, 100001 (2010). (10.1143/JJAP.49.100001) / Jpn J. Appl. Phys. by Y Fujisaki (2010)
  3. Kim, K. From the future Si technology perspective: challenges and opportunities. IEDM Tech. Dig. 1–9 (2010).
  4. Lee, M. J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011). (10.1038/nmat3070) / Nat. Mater. by MJ Lee (2011)
  5. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009). (10.1002/adma.200900375) / Adv. Mater. by R Waser (2009)
  6. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008). (10.1016/S1369-7021(08)70119-6) / Mater. Today by A Sawa (2008)
  7. Rozenberg, M. J. et al. Mechanism for bipolar resistive switching in transition-metal oxides. Phys. Rev. B 81, 20–23 (2010). (10.1103/PhysRevB.81.115101) / Phys. Rev. B by MJ Rozenberg (2010)
  8. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). (10.1038/nmat2023) / Nat. Mater. by R Waser (2007)
  9. Blanc, J. & Staebler, D. L. Electrocoloration in SrTiO: vacancy drift and oxidation-reduction of transition metals. Phys. Rev. B 4, 3548–3557 (1971). (10.1103/PhysRevB.4.3548) / Phys. Rev. B by J Blanc (1971)
  10. Janousch, M. et al. Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232–2235 (2007). (10.1002/adma.200602915) / Adv. Mater. by M Janousch (2007)
  11. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008). (10.1038/nnano.2008.160) / Nat. Nanotechnol. by JJ Yang (2008)
  12. Miao, F. et al. Anatomy a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011). (10.1002/adma.201103379) / Adv. Mater. by F Miao (2011)
  13. Lee, M. J. et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476–1481 (2009). (10.1021/nl803387q) / Nano Lett. by MJ Lee (2009)
  14. Kwon, D.-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotech. 5, 148–153 (2010). (10.1038/nnano.2009.456) / Nat. Nanotech. by D-H Kwon (2010)
  15. Regan, B. C., Aloni, S., Ritchie, R. O., Dahmen, U. & Zettl, A. Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004). (10.1038/nature02496) / Nature by BC Regan (2004)
  16. Choi, S. J. et al. In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3272–3277 (2011). (10.1002/adma.201100507) / Adv. Mater. by SJ Choi (2011)
  17. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 732, 1–8 (2012). / Nat. Commun. by Y Yang (2012)
  18. Fujii, T., Arita, M., Takahashi, Y. & Fujiwara, I. In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl. Phys. Lett. 98, 212104 (2011). (10.1063/1.3593494) / Appl. Phys. Lett. by T Fujii (2011)
  19. Hur, J. H., Lee, M. J., Lee, C. B., Kim, Y. B. & Kim, C. J. Modeling for bipolar resistive memory switching in transition-metal oxides. Phys. Rev. B 82, 155321 (2010). (10.1103/PhysRevB.82.155321) / Phys. Rev. B by JH Hur (2010)
  20. Nagao, T. Characterization of atomic-level plasmonic structures by low-energy EELS. Surf. Interface Anal. 40, 1764–1767 (2008). (10.1002/sia.3002) / Surf. Interface Anal. by T Nagao (2008)
  21. Yang, J. J. et al. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010). (10.1063/1.3524521) / Appl. Phys. Lett. by JJ Yang (2010)
  22. Yang, Y., Choi, S. H. & Lu, W. Oxide heterostructure resistive memory. Nano Lett. 13, 2908–2915 (2013). (10.1021/nl401287w) / Nano Lett. by Y Yang (2013)
  23. Ramprasad, R. First principles study of oxygen vacancy defects in tantalum pentoxide. J. Appl. Phys. 94, 5609–5612 (2003). (10.1063/1.1615700) / J. Appl. Phys. by R Ramprasad (2003)
  24. Gu, T., Wang, Z., Tada, T. & Watanabe, S. First-principles simulations on bulk Ta2O5 and Cu/Ta2O5/Pt heterojunction: electronic structures and transport properties. J. Appl. Phys. 106, 103713 (2009). (10.1063/1.3260244) / J. Appl. Phys. by T Gu (2009)
  25. Gu, T., Tada, T. & Watanabe, S. Conductive path formation in the Ta2O5 atomic switch: first-principles analyses. ACS Nano 4, 2515–2522 (2010). (10.1021/nn100483a) / ACS Nano by T Gu (2010)
  26. Lee, C. B. et al. Highly uniform switching of tantalum embedded amorphous oxide using self-compliance bipolar resistive switching. IEEE Electron Dev. Lett. 32, 399–401 (2011). (10.1109/LED.2010.2101044) / IEEE Electron Dev. Lett. by CB Lee (2011)
  27. Wei, Z. et al. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. IEEE Int. Electron Dev. Meet. Tech. Dig. 293, 5671467 (2008). / IEEE Int. Electron Dev. Meet. Tech. Dig. by Z Wei (2008)
  28. GaO, P. et al. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 41, 301–305 (2010). (10.1016/j.micron.2009.11.010) / Micron by P GaO (2010)
  29. Klenov, D. O. & Stemmer, S. Contribution to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106, 889–901 (2006). (10.1016/j.ultramic.2006.03.007) / Ultramicroscopy by DO Klenov (2006)
  30. Liu, Q. et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4, 6162–6168 (2010). (10.1021/nn1017582) / ACS Nano by Q Liu (2010)
  31. Strukov, D. & Williams, R. Intrinsic constrains on thermally-assisted memristive switching. Appl. Phys. A 102, 851–855 (2011). (10.1007/s00339-011-6269-4) / Appl. Phys. A by D Strukov (2011)
  32. Guan, W., Liu, M., Long, S., Liu, Q. & Wang, W. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008). (10.1063/1.3039079) / Appl. Phys. Lett. by W Guan (2008)
  33. Park, G.-S. et al. Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl. Phys. Lett. 91, 222103 (2007). (10.1063/1.2813617) / Appl. Phys. Lett. by G-S Park (2007)
  34. Strachan, J. P. et al. Spectromicroscopy of tantalum oxide memristors. Appl. Phys. Lett. 98, 242114 (2011). (10.1063/1.3599589) / Appl. Phys. Lett. by JP Strachan (2011)
  35. Magyari-Köpe, B., Park, S., Lee, H. & Nishi, Y. Understanding the switching mechanism in RRAM devices and the dielectric breakdown of ultrathin high-k gate stacks from first principles calculations. ECS Trans. 37, 167–178 (2011). (10.1149/1.3600737) / ECS Trans. by B Magyari-Köpe (2011)
  36. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium range order in metallic glasses. Nature 439, 419–425 (2006). (10.1038/nature04421) / Nature by HW Sheng (2006)
  37. Strachan, J. P. et al. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010). (10.1002/adma.201000186) / Adv. Mater. by JP Strachan (2010)
  38. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). (10.1063/1.1323224) / J. Chem. Phys. by G Henkelman (2000)
  39. McHale, A. E. & Tuller, H. L. Defects and charge transport in β-Ta2O5: I, analysis of the conductivity observed in nominally pure β-Ta2O5 . J. Am. Ceram. Soc. 68, 646–650 (1985). (10.1111/j.1151-2916.1985.tb10118.x) / J. Am. Ceram. Soc. by AE McHale (1985)
  40. Inoue, I. H., Yasuda, S., Akinaga, H. & Takagi, H. Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transition of current distribution. Phys. Rev. B 77, 035105 (2008). (10.1103/PhysRevB.77.035105) / Phys. Rev. B by IH Inoue (2008)
  41. Singh, B., Mehta, B. R., Varandani, D., Savu, A. V. & Brugger, J. CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique. Nanotechnology 23, 495707 (2012). (10.1088/0957-4484/23/49/495707) / Nanotechnology by B Singh (2012)
Dates
Type When
Created 11 years, 11 months ago (Sept. 6, 2013, 6:08 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:36 p.m.)
Indexed 4 weeks, 2 days ago (July 23, 2025, 8:01 a.m.)
Issued 11 years, 11 months ago (Sept. 6, 2013)
Published 11 years, 11 months ago (Sept. 6, 2013)
Published Online 11 years, 11 months ago (Sept. 6, 2013)
Funders 0

None

@article{Park_2013, title={In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3382}, DOI={10.1038/ncomms3382}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Park, Gyeong-Su and Kim, Young Bae and Park, Seong Yong and Li, Xiang Shu and Heo, Sung and Lee, Myoung-Jae and Chang, Man and Kwon, Ji Hwan and Kim, M. and Chung, U-In and Dittmann, Regina and Waser, Rainer and Kim, Kinam}, year={2013}, month=sep }