Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractPhase-change materials are the basis for next-generation memory devices and reconfigurable electronics, but fundamental understanding of the unconventional kinetics of their phase transitions has been hindered by challenges in the experimental quantification. Here we obtain deeper understanding based on the temperature dependence of the crystal growth velocity of the phase-change material AgInSbTe, as derived from laser-based time-resolved reflectivity measurements. We observe a strict Arrhenius behaviour for the growth velocity over eight orders of magnitude (from ~10 nm s−1to ~1 m s−1). This can be attributed to the formation of a glass at elevated temperatures because of rapid quenching of the melt. Further, the temperature dependence of the viscosity is derived, which reveals that the supercooled liquid phase must have an extremely high fragility (>100). Finally, the new experimental evidence leads to an interpretation, which comprehensively explains existing data from various different experiments reported in literature.

Bibliography

Salinga, M., Carria, E., Kaldenbach, A., Bornhöfft, M., Benke, J., Mayer, J., & Wuttig, M. (2013). Measurement of crystal growth velocity in a melt-quenched phase-change material. Nature Communications, 4(1).

Authors 7
  1. Martin Salinga (first)
  2. Egidio Carria (additional)
  3. Andreas Kaldenbach (additional)
  4. Manuel Bornhöfft (additional)
  5. Julia Benke (additional)
  6. Joachim Mayer (additional)
  7. Matthias Wuttig (additional)
References 53 Referenced 197
  1. Kelton, K. F. & Greer, A. L. inNucleation in Condensed Matter Elsevier, Pergamon Materials Series (2010).
  2. Raoux, S., Ielmini, D., Wuttig, M. & Karpov, I. Phase change materials. MRS. Bull. 37, 118–123 (2012). (10.1557/mrs.2011.357) / MRS. Bull. by S Raoux (2012)
  3. Lencer, D., Salinga, M. & Wuttig, M. Design rules for phase-change materials in data storage applications. Adv. Mater. 23, 2030–2058 (2011). (10.1002/adma.201004255) / Adv. Mater. by D Lencer (2011)
  4. Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010). (10.1116/1.3301579) / J. Vac. Sci. Technol. B by GW Burr (2010)
  5. Hegedus, J. & Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat. Mater. 7, 399–405 (2008). (10.1038/nmat2157) / Nat. Mater. by J Hegedus (2008)
  6. Matsunaga, T. et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011). (10.1038/nmat2931) / Nat. Mater. by T Matsunaga (2011)
  7. Kalb, J., Spaepen, F. & Wuttig, M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240–5242 (2004). (10.1063/1.1764591) / Appl. Phys. Lett. by J Kalb (2004)
  8. Kalb, J. A., Wen, C. Y., Spaepen, F., Dieker, H. & Wuttig, M. Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. J. Appl. Phys. 98, 054902 (2005). (10.1063/1.2034655) / J. Appl. Phys. by JA Kalb (2005)
  9. Kooi, B. J., Pandian, R., De Hosson, J. T. M. & Pauza, A. In situ transmission electron microscopy study of the crystallization of fast-growth doped SbxTe alloy films. J. Mater. Res. 20, 1825–1835 (2005). (10.1557/JMR.2005.0228) / J. Mater. Res. by BJ Kooi (2005)
  10. Mio, A. M. et al. Nucleation and grain growth in as deposited and ion implanted GeTe thin films. J. Non-Cryst Solids 357, 2197–2201 (2011). (10.1016/j.jnoncrysol.2011.02.042) / J. Non-Cryst Solids by AM Mio (2011)
  11. Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279–283 (2012). (10.1038/nmat3275) / Nat. Mater. by J Orava (2012)
  12. Weidenhof, V., Friedrich, I., Ziegler, S. & Wuttig, M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys. 89, 3168–3176 (2001). (10.1063/1.1351868) / J. Appl. Phys. by V Weidenhof (2001)
  13. Meinders, E. R. & Lankhorst, M. H. R. Determination of the crystallisation kinetics of fast-growth phase-change materials for mark-formation prediction. Jpn J. Appl. Phys. 1 42, 809–812 (2003). (10.1143/JJAP.42.809) / Jpn J. Appl. Phys. 1 by ER Meinders (2003)
  14. Chen, M., Rubin, K. A. & Barton, R. W. Compound materials for reversible, phase-change optical-data storage. Appl. Phys. Lett. 49, 502–504 (1986). (10.1063/1.97617) / Appl. Phys. Lett. by M Chen (1986)
  15. Salinga, M. Phase Change Materials for Non-volatile Electronic Memories PhD thesis, RWTH Aachen Univ. ((2008).
  16. Risk, W. P., Rettner, C. T. & Raoux, S. Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3 omega method. Appl. Phys. Lett. 94, 101906 (2009). (10.1063/1.3097353) / Appl. Phys. Lett. by WP Risk (2009)
  17. Kelton, K. F. Analysis of crystallization kinetics. Mat. Sci. Eng. a-Struct. 226, 142–150 (1997). (10.1016/S0921-5093(96)10607-9) / Mat. Sci. Eng. a-Struct. by KF Kelton (1997)
  18. Kooi, B. J. & De Hosson, J. T. M. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J. Appl. Phys. 95, 4714–4721 (2004). (10.1063/1.1690112) / J. Appl. Phys. by BJ Kooi (2004)
  19. Rimini, E. et al. Crystallization of sputtered-deposited and ion implanted amorphous Ge(2)Sb(2)Te(5) thin films. J. Appl. Phys. 105, 123502 (2009). (10.1063/1.3148288) / J. Appl. Phys. by E Rimini (2009)
  20. Lee, B. S. et al. Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980–984 (2009). (10.1126/science.1177483) / Science by BS Lee (2009)
  21. Ziegler, S. & Wuttig, M. Nucleation of AgInSbTe films employed in phase-change media. J. Appl. Phys. 99, 064907 (2006). (10.1063/1.2184428) / J. Appl. Phys. by S Ziegler (2006)
  22. Wuttig, M. & Salinga, M. Phase-change materials fast transformers. Nat. Mater. 11, 270–271 (2012). (10.1038/nmat3288) / Nat. Mater. by M Wuttig (2012)
  23. Oosthoek, J. et al. Crystallization studies of doped SbTe phase-change thin films and PRAM line cells: growth rate determination by automated TEM image analysis. E/PCOS Proc. 104–107 (2009).
  24. Carria, E. et al. Crystallization of primed amorphous Ge2Sb2Te5 studied by transmission electron microscopy. E/PCOS Proc. 2012, 170–171 (2012). / E/PCOS Proc. by E Carria (2012)
  25. Carria, E. et al. Polymorphism of amorphous Ge2Sb2Te5 probed by EXAFS and raman spectroscopy. Electrochem. Solid St 14, H480–H482 (2011). (10.1149/2.019112esl) / Electrochem. Solid St by E Carria (2011)
  26. Herwig, F. & Wobst, M. Measurements of viscosity in the systems antimony tellurium and tin tellurium. Z Metallkd 83, 35–39 (1992). / Z Metallkd by F Herwig (1992)
  27. Akola, J. & Jones, R. O. Structure of liquid phase change material AgInSbTe from density functional/molecular dynamics simulations. Appl. Phys. Lett. 94, 251905 (2009). (10.1063/1.3157166) / Appl. Phys. Lett. by J Akola (2009)
  28. Thompson, C. V. & Spaepen, F. Approximation of the free-energy change on crystallization. Acta Metall. Mater. 27, 1855–1859 (1979). (10.1016/0001-6160(79)90076-2) / Acta Metall. Mater. by CV Thompson (1979)
  29. Kalb, J. A. PhD (RWTH Aachen University: Aachen, (2006).
  30. Ediger, M. D., Harrowell, P. & Yu, L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 128, 034709 (2008). (10.1063/1.2815325) / J. Chem. Phys. by MD Ediger (2008)
  31. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000). (10.1146/annurev.physchem.51.1.99) / Annu. Rev. Phys. Chem. by MD Ediger (2000)
  32. Kalb, J., Spaepen, F., Pedersen, T. P. L. & Wuttig, M. Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 94, 4908–4912 (2003). (10.1063/1.1610775) / J. Appl. Phys. by J Kalb (2003)
  33. Cho, J.-Y., Yang, T.-Y., Park, Y.-J. & Joo, Y.-C. Study on the resistance drift in amorphous Ge2Sb2Te5 according to defect annihilation and stress relaxation. Electrochem. Solid State Lett. 15, H81 (2012). (10.1149/2.001204esl) / Electrochem. Solid State Lett. by J-Y Cho (2012)
  34. Tsao, S. S. & Spaepen, F. Structural relaxation of a metallic-glass near equilibrium. Acta Metall. Mater. 33, 881–889 (1985). (10.1016/0001-6160(85)90112-9) / Acta Metall. Mater. by SS Tsao (1985)
  35. Angell, C. A. Glass-formers and viscous liquid slowdown since David Turnbull: enduring puzzles and new twists. MRS. Bull. 33, 544–555 (2008). (10.1557/mrs2008.108) / MRS. Bull. by CA Angell (2008)
  36. Wang, L. M. & Mauro, J. C. An upper limit to kinetic fragility in glass-forming liquids. J. Chem. Phys. 134, 044522 (2011). (10.1063/1.3526942) / J. Chem. Phys. by LM Wang (2011)
  37. Bohmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993). (10.1063/1.466117) / J. Chem. Phys. by R Bohmer (1993)
  38. Mauro, J. C., Yue, Y. Z., Ellison, A. J., Gupta, P. K. & Allan, D. C. Viscosity of glass-forming liquids. P. Natl Acad. Sci. USA 106, 19780–19784 (2009). (10.1073/pnas.0911705106) / P. Natl Acad. Sci. USA by JC Mauro (2009)
  39. Kalb, J. A., Wuttig, M. & Spaepen, F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007). (10.1557/jmr.2007.0103) / J. Mater. Res. by JA Kalb (2007)
  40. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113 (2000). (10.1063/1.1286035) / J. Appl. Phys. by CA Angell (2000)
  41. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001). (10.1038/35065704) / Nature by PG Debenedetti (2001)
  42. Kalb, J., Spaepen, F. & Wuttig, M. Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 93, 2389–2393 (2003). (10.1063/1.1540227) / J. Appl. Phys. by J Kalb (2003)
  43. Kuwahara, M. et al. Measurement of refractive index, specific heat capacity, and thermal conductivity for Ag6.0In4.5Sb60.8Te28.7 at high temperature. Jpn J. Appl. Phys. 48, 05EC02 (2009). (10.1143/JJAP.48.05EC02) / Jpn J. Appl. Phys. by M Kuwahara (2009)
  44. Ielmini, D., Lavizzari, S., Sharma, D. & Lacaita, A. L. Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5. Appl. Phys. Lett. 92, 193511 (2008). (10.1063/1.2930680) / Appl. Phys. Lett. by D Ielmini (2008)
  45. Boniardi, M. & Ielmini, D. Physical origin of the resistance drift exponent in amorphous phase change materials. Appl. Phys. Lett. 98, 243506 (2011). (10.1063/1.3599559) / Appl. Phys. Lett. by M Boniardi (2011)
  46. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008). (10.1038/nmat2226) / Nat. Mater. by K Shportko (2008)
  47. Baak, T. Silicon oxynitride: a material for grin optics. Appl. Optics 21, 1069–1072 (1982). (10.1364/AO.21.001069) / Appl. Optics by T Baak (1982)
  48. Yasuda, K., Ono, M., Aratani, K., Fukumoto, A. & Kaneko, M. Premastered optical disk by superresolution. Jpn J. Appl. Phys. 1 32, 5210–5213 (1993). (10.1143/JJAP.32.5210) / Jpn J. Appl. Phys. 1 by K Yasuda (1993)
  49. Jain, A. & Goodson, K. E. Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3 omega method. J. Heat Trans-T Asme 130, (2008). (10.1115/1.2945904)
  50. Kuwahara, M. et al. Temperature dependence of the thermal properties of optical memory materials. Jpn J. Appl. Phys. P 1 46, 3909–3911 (2007). (10.1143/JJAP.46.3909) / Jpn J. Appl. Phys. P 1 by M Kuwahara (2007)
  51. Glassbrenner, C. J. & Slack, G. A. Thermal conductivity of Silicon+Germanium from 3 degrees K to melting point. Phys. Rev. a-Gen. Phys. 134, 1058–1105 (1964). (10.1103/PhysRev.134.A1058) / Phys. Rev. a-Gen. Phys. by CJ Glassbrenner (1964)
  52. Kalb, J. A., Spaepen, F. & Wuttig, M. Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 054910 (2005). (10.1063/1.2037870) / J. Appl. Phys. by JA Kalb (2005)
  53. Kim, E. K., Kwun, S. I., Lee, S. M., Seo, H. & Yoon, J. G. Thermal boundary resistance at Ge2Sb2Te5/ZnS: SiO2 interface. Appl. Phys. Lett. 76, 3864–3866 (2000). (10.1063/1.126852) / Appl. Phys. Lett. by EK Kim (2000)
Dates
Type When
Created 11 years, 11 months ago (Aug. 29, 2013, 6:27 a.m.)
Deposited 1 year, 3 months ago (May 17, 2024, 8:12 a.m.)
Indexed 4 weeks ago (July 26, 2025, 5:02 a.m.)
Issued 11 years, 11 months ago (Aug. 29, 2013)
Published 11 years, 11 months ago (Aug. 29, 2013)
Published Online 11 years, 11 months ago (Aug. 29, 2013)
Funders 0

None

@article{Salinga_2013, title={Measurement of crystal growth velocity in a melt-quenched phase-change material}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3371}, DOI={10.1038/ncomms3371}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Salinga, Martin and Carria, Egidio and Kaldenbach, Andreas and Bornhöfft, Manuel and Benke, Julia and Mayer, Joachim and Wuttig, Matthias}, year={2013}, month=aug }