Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Wang, Y., Yu, X., Xu, S., Bai, J., Xiao, R., Hu, Y.-S., Li, H., Yang, X.-Q., Chen, L., & Huang, X. (2013). A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications, 4(1).

Authors 10
  1. Yuesheng Wang (first)
  2. Xiqian Yu (additional)
  3. Shuyin Xu (additional)
  4. Jianming Bai (additional)
  5. Ruijuan Xiao (additional)
  6. Yong-Sheng Hu (additional)
  7. Hong Li (additional)
  8. Xiao-Qing Yang (additional)
  9. Liquan Chen (additional)
  10. Xuejie Huang (additional)
References 59 Referenced 537
  1. Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). (10.1021/cr100290v) / Chem. Rev. by Z Yang (2011)
  2. Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). (10.1126/science.1212741) / Science by B Dunn (2011)
  3. Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). (10.1038/ncomms1563) / Nat. Commun. by CD Wessells (2011)
  4. Pasta, M., Wessells, C. D., Huggins, R. A. & Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). (10.1038/ncomms2139) / Nat. Commun. by M Pasta (2012)
  5. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). (10.1038/ncomms2513) / Nat. Commun. by L Suo (2013)
  6. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  7. Ellis, B. L., Makahnouk, W. R. M., Makimura, Y., Toghill, K. & Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6, 749–753 (2007). (10.1038/nmat2007) / Nat. Mater. by BL Ellis (2007)
  8. Zu, C. X. & Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614–2624 (2011). (10.1039/c0ee00777c) / Energy Environ. Sci. by CX Zu (2011)
  9. Palomares, V. et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012). (10.1039/c2ee02781j) / Energy Environ. Sci. by V Palomares (2012)
  10. Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G. & Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2, 710–721 (2012). (10.1002/aenm.201200026) / Adv. Energy Mater. by S-W Kim (2012)
  11. Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-Ion Batteries. Adv. Funct. Mater. 947–958 (2012). (10.1002/adfm.201200691)
  12. Ellis, B. L. & Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012). (10.1016/j.cossms.2012.04.002) / Curr. Opin. Solid State Mater. Sci. by BL Ellis (2012)
  13. Jian, Z. L. et al. Carbon coated Na3V2(PO4)(3) as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012). (10.1016/j.elecom.2011.11.009) / Electrochem. Commun. by ZL Jian (2012)
  14. Jian, Z. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013). (10.1002/aenm.201200558) / Adv. Energy Mater. by Z Jian (2013)
  15. Cao, Y. et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 23, 3155–3160 (2011). (10.1002/adma.201100904) / Adv. Mater. by Y Cao (2011)
  16. Lu, Y., Wang, L., Cheng, J. & Goodenough, J. B. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012). (10.1039/c2cc31777j) / Chem. Commun. by Y Lu (2012)
  17. Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011). (10.1039/c1ee01782a) / Energy Environ. Sci. by SP Ong (2011)
  18. Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012). (10.1038/ncomms1843) / Nat. Commun. by A Hayashi (2012)
  19. Li, Z., Young, D., Xiang, K., Carter, W. C. & Chiang, Y.-M. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 System. Adv. Energy Mater. 290–294 (2012). (10.1002/aenm.201200598)
  20. Abouimrane, A. et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci. 5, 9632–9638 (2012). (10.1039/c2ee22864e) / Energy Environ. Sci. by A Abouimrane (2012)
  21. Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M. & Palacin, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012). (10.1039/c2ee22258b) / Energy Environ. Sci. by A Ponrouch (2012)
  22. Barpanda, P. et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem. Commun. 24, 116–119 (2012). (10.1016/j.elecom.2012.08.028) / Electrochem. Commun. by P Barpanda (2012)
  23. Shakoor, R. A. et al. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 22, 20535–20541 (2012). (10.1039/c2jm33862a) / J. Mater. Chem. by RA Shakoor (2012)
  24. Qian, J., Zhou, M., Cao, Y., Ai, X. & Yang, H. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries. Adv. Energy Mater. 2, 410–414 (2012). (10.1002/aenm.201100655) / Adv. Energy Mater. by J Qian (2012)
  25. Ferg, E., Gummow, R. J., Dekock, A. & Thackeray, M. M. Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 141, L147–L150 (1994). (10.1149/1.2059324) / J. Electrochem. Soc. by E Ferg (1994)
  26. Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of LiLi1/3Ti5/3O4 for rechageable lithiun cells. J. Electrochem. Soc. 142, 1431–1435 (1995). (10.1149/1.2048592) / J. Electrochem. Soc. by T Ohzuku (1995)
  27. Zhao, L., Hu, Y. S., Li, H., Wang, Z. & Chen, L. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23, 1385–1388 (2011). (10.1002/adma.201003294) / Adv. Mater. by L Zhao (2011)
  28. Komaba, S. et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries. Adv. Funct. Mater. 21, 3859–3867 (2011). (10.1002/adfm.201100854) / Adv. Funct. Mater. by S Komaba (2011)
  29. Alcantara, R., Jaraba, M., Lavela, P. & Tirado, J. L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847–2848 (2002). (10.1021/cm025556v) / Chem. Mater. by R Alcantara (2002)
  30. Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J. M. & Palacin, M. R. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011). (10.1021/cm202076g) / Chem. Mater. by P Senguttuvan (2011)
  31. Xiong, H., Slater, M. D., Balasubramanian, M., Johnson, C. S. & Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565 (2011). (10.1021/jz2012066) / J. Phys. Chem. Lett. by H Xiong (2011)
  32. Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013). (10.1038/ncomms2878) / Nat. Commun. by Y Sun (2013)
  33. Sun, Q., Ren, Q. Q., Li, H. & Fu, Z. W. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem. Commun. 13, 1462–1464 (2011). (10.1016/j.elecom.2011.09.020) / Electrochem. Commun. by Q Sun (2011)
  34. Qian, J. F. et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48, 7070–7072 (2012). (10.1039/c2cc32730a) / Chem. Commun. by JF Qian (2012)
  35. Xiao, L. F. et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 48, 3321–3323 (2012). (10.1039/c2cc17129e) / Chem. Commun. by LF Xiao (2012)
  36. Zhao, L. et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2, 962–965 (2012). (10.1002/aenm.201200166) / Adv. Energy Mater. by L Zhao (2012)
  37. Il Park, S., Gocheva, I., Okada, S. & Yamaki, J. Electrochemical properties of NaTi2(PO4)(3) anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067–A1070 (2011). (10.1149/1.3611434) / J. Electrochem. Soc. by S Il Park (2011)
  38. Senguttuvan, P. et al. Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. J. Am. Chem. Soc. 135, 3897–3903 (2013). (10.1021/ja311044t) / J. Am. Chem. Soc. by P Senguttuvan (2013)
  39. Chevrier, V. L. & Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011). (10.1149/1.3607983) / J. Electrochem. Soc. by VL Chevrier (2011)
  40. Stevens, D. A. & Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271–1273 (2000). (10.1149/1.1393348) / J. Electrochem. Soc. by DA Stevens (2000)
  41. Wenzel, S., Hara, T., Janek, J. & Adelhelm, P. Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342–3345 (2011). (10.1039/c1ee01744f) / Energy Environ. Sci. by S Wenzel (2011)
  42. Delmas, C., Braconnier, J.-J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 3–4, 165–169 (1981). (10.1016/0167-2738(81)90076-X) / Solid State Ionics by C Delmas (1981)
  43. Komaba, S., Takei, C., Nakayama, T., Ogata, A. & Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. Commun. 12, 355–358 (2010). (10.1016/j.elecom.2009.12.033) / Electrochem. Commun. by S Komaba (2010)
  44. Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–U73 (2011). (10.1038/nmat2920) / Nat. Mater. by R Berthelot (2011)
  45. Kim, D. et al. Layered Na Ni1/3Fe1/3Mn1/3 O-2 cathodes for Na-ion battery application. Electrochem. Commun. 18, 66–69 (2012). (10.1016/j.elecom.2012.02.020) / Electrochem. Commun. by D Kim (2012)
  46. Yabuuchi, N. et al. P2-type Na-x Fe1/2Mn1/2 O-2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012). (10.1038/nmat3309) / Nat. Mater. by N Yabuuchi (2012)
  47. Kim, D. et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 1, 333–336 (2011). (10.1002/aenm.201000061) / Adv. Energy Mater. by D Kim (2011)
  48. Guignard, M. et al. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 12, 74–80 (2013). (10.1038/nmat3478) / Nat. Mater. by M Guignard (2013)
  49. Carlier, D. et al. The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton. Trans. 40, 9306–9312 (2011). (10.1039/c1dt10798d) / Dalton. Trans. by D Carlier (2011)
  50. Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J. M. & Prakash, A. S. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater. 24, 1846–1853 (2012). (10.1021/cm300466b) / Chem. Mater. by M Sathiya (2012)
  51. Komaba, S. et al. Study on the reversible electrode reaction of Na1-xNi0.5 Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 51, 6211–6220 (2012). (10.1021/ic300357d) / Inorg. Chem. by S Komaba (2012)
  52. Yoshida, H., Yabuuchi, N. & Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 34, 60–63 (2013). (10.1016/j.elecom.2013.05.012) / Electrochem. Commun. by H Yoshida (2013)
  53. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+C 99, 81–85 (1980). (10.1016/0378-4363(80)90214-4) / Physica B+C by C Delmas (1980)
  54. Maazaz, A., Delmas, C. & Hagenmuller., D. A study of the NaxTiO2 system by electrochemical deintercalation. J. Incl. Phenom. 1, 45–51 (1983). (10.1007/BF00658014) / J. Incl. Phenom. by A Maazaz (1983)
  55. Shilov, G. V., Nalbandyan, V. B., Volochaev, V. A. & Atovmyan, L. O. Crystal growth and crystal structures of the layered ionic conductors–sodium lithium titanium oxides. Int. J. Inorg. Mater. 2, 443–449 (2000). (10.1016/S1466-6049(00)00050-7) / Int. J. Inorg. Mater. by GV Shilov (2000)
  56. De Boisse, B. M., Carlier, D., Guignard, M. & Delmas, C. Structural and electrochemical characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases prepared by auto-combustion synthesis for Na-ion batteries. J. Electrochem. Soc. 160, A569–A574 (2013). (10.1149/2.032304jes) / J. Electrochem. Soc. by BM De Boisse (2013)
  57. Komaba, S. et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable NA batteries. ACS Appl. Mater. Interfaces 3, 4165–4168 (2011). (10.1021/am200973k) / ACS Appl. Mater. Interfaces by S Komaba (2011)
  58. Ehrenberg, H. et al. The crystal and magnetic structure relationship in Cu(W-1-xMOx)O-4 compounds with wolframite-type structure. J. Phys.-Condes. Mat. 14, 8573–8581 (2002). (10.1088/0953-8984/14/36/313) / J. Phys.-Condes. Mat. by H Ehrenberg (2002)
  59. Pan, H. et al. Sodium Storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater. doi:10.1002/aenm.201300139 (2013). (10.1002/aenm.201300139)
Dates
Type When
Created 12 years ago (Aug. 27, 2013, 6:27 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:37 p.m.)
Indexed 13 hours, 25 minutes ago (Aug. 27, 2025, 11:35 a.m.)
Issued 12 years ago (Aug. 27, 2013)
Published 12 years ago (Aug. 27, 2013)
Published Online 12 years ago (Aug. 27, 2013)
Funders 0

None

@article{Wang_2013, title={A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3365}, DOI={10.1038/ncomms3365}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wang, Yuesheng and Yu, Xiqian and Xu, Shuyin and Bai, Jianming and Xiao, Ruijuan and Hu, Yong-Sheng and Li, Hong and Yang, Xiao-Qing and Chen, Liquan and Huang, Xuejie}, year={2013}, month=aug }