Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
59
Referenced
537
-
Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).
(
10.1021/cr100290v
) / Chem. Rev. by Z Yang (2011) -
Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).
(
10.1126/science.1212741
) / Science by B Dunn (2011) -
Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).
(
10.1038/ncomms1563
) / Nat. Commun. by CD Wessells (2011) -
Pasta, M., Wessells, C. D., Huggins, R. A. & Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012).
(
10.1038/ncomms2139
) / Nat. Commun. by M Pasta (2012) -
Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).
(
10.1038/ncomms2513
) / Nat. Commun. by L Suo (2013) -
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Ellis, B. L., Makahnouk, W. R. M., Makimura, Y., Toghill, K. & Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6, 749–753 (2007).
(
10.1038/nmat2007
) / Nat. Mater. by BL Ellis (2007) -
Zu, C. X. & Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614–2624 (2011).
(
10.1039/c0ee00777c
) / Energy Environ. Sci. by CX Zu (2011) -
Palomares, V. et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012).
(
10.1039/c2ee02781j
) / Energy Environ. Sci. by V Palomares (2012) -
Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G. & Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2, 710–721 (2012).
(
10.1002/aenm.201200026
) / Adv. Energy Mater. by S-W Kim (2012) -
Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-Ion Batteries. Adv. Funct. Mater. 947–958 (2012).
(
10.1002/adfm.201200691
) -
Ellis, B. L. & Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012).
(
10.1016/j.cossms.2012.04.002
) / Curr. Opin. Solid State Mater. Sci. by BL Ellis (2012) -
Jian, Z. L. et al. Carbon coated Na3V2(PO4)(3) as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012).
(
10.1016/j.elecom.2011.11.009
) / Electrochem. Commun. by ZL Jian (2012) -
Jian, Z. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013).
(
10.1002/aenm.201200558
) / Adv. Energy Mater. by Z Jian (2013) -
Cao, Y. et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 23, 3155–3160 (2011).
(
10.1002/adma.201100904
) / Adv. Mater. by Y Cao (2011) -
Lu, Y., Wang, L., Cheng, J. & Goodenough, J. B. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012).
(
10.1039/c2cc31777j
) / Chem. Commun. by Y Lu (2012) -
Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011).
(
10.1039/c1ee01782a
) / Energy Environ. Sci. by SP Ong (2011) -
Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).
(
10.1038/ncomms1843
) / Nat. Commun. by A Hayashi (2012) -
Li, Z., Young, D., Xiang, K., Carter, W. C. & Chiang, Y.-M. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 System. Adv. Energy Mater. 290–294 (2012).
(
10.1002/aenm.201200598
) -
Abouimrane, A. et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci. 5, 9632–9638 (2012).
(
10.1039/c2ee22864e
) / Energy Environ. Sci. by A Abouimrane (2012) -
Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M. & Palacin, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012).
(
10.1039/c2ee22258b
) / Energy Environ. Sci. by A Ponrouch (2012) -
Barpanda, P. et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem. Commun. 24, 116–119 (2012).
(
10.1016/j.elecom.2012.08.028
) / Electrochem. Commun. by P Barpanda (2012) -
Shakoor, R. A. et al. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 22, 20535–20541 (2012).
(
10.1039/c2jm33862a
) / J. Mater. Chem. by RA Shakoor (2012) -
Qian, J., Zhou, M., Cao, Y., Ai, X. & Yang, H. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries. Adv. Energy Mater. 2, 410–414 (2012).
(
10.1002/aenm.201100655
) / Adv. Energy Mater. by J Qian (2012) -
Ferg, E., Gummow, R. J., Dekock, A. & Thackeray, M. M. Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 141, L147–L150 (1994).
(
10.1149/1.2059324
) / J. Electrochem. Soc. by E Ferg (1994) -
Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of LiLi1/3Ti5/3O4 for rechageable lithiun cells. J. Electrochem. Soc. 142, 1431–1435 (1995).
(
10.1149/1.2048592
) / J. Electrochem. Soc. by T Ohzuku (1995) -
Zhao, L., Hu, Y. S., Li, H., Wang, Z. & Chen, L. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23, 1385–1388 (2011).
(
10.1002/adma.201003294
) / Adv. Mater. by L Zhao (2011) -
Komaba, S. et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).
(
10.1002/adfm.201100854
) / Adv. Funct. Mater. by S Komaba (2011) -
Alcantara, R., Jaraba, M., Lavela, P. & Tirado, J. L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847–2848 (2002).
(
10.1021/cm025556v
) / Chem. Mater. by R Alcantara (2002) -
Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J. M. & Palacin, M. R. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011).
(
10.1021/cm202076g
) / Chem. Mater. by P Senguttuvan (2011) -
Xiong, H., Slater, M. D., Balasubramanian, M., Johnson, C. S. & Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565 (2011).
(
10.1021/jz2012066
) / J. Phys. Chem. Lett. by H Xiong (2011) -
Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013).
(
10.1038/ncomms2878
) / Nat. Commun. by Y Sun (2013) -
Sun, Q., Ren, Q. Q., Li, H. & Fu, Z. W. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem. Commun. 13, 1462–1464 (2011).
(
10.1016/j.elecom.2011.09.020
) / Electrochem. Commun. by Q Sun (2011) -
Qian, J. F. et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48, 7070–7072 (2012).
(
10.1039/c2cc32730a
) / Chem. Commun. by JF Qian (2012) -
Xiao, L. F. et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 48, 3321–3323 (2012).
(
10.1039/c2cc17129e
) / Chem. Commun. by LF Xiao (2012) -
Zhao, L. et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2, 962–965 (2012).
(
10.1002/aenm.201200166
) / Adv. Energy Mater. by L Zhao (2012) -
Il Park, S., Gocheva, I., Okada, S. & Yamaki, J. Electrochemical properties of NaTi2(PO4)(3) anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067–A1070 (2011).
(
10.1149/1.3611434
) / J. Electrochem. Soc. by S Il Park (2011) -
Senguttuvan, P. et al. Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. J. Am. Chem. Soc. 135, 3897–3903 (2013).
(
10.1021/ja311044t
) / J. Am. Chem. Soc. by P Senguttuvan (2013) -
Chevrier, V. L. & Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011).
(
10.1149/1.3607983
) / J. Electrochem. Soc. by VL Chevrier (2011) -
Stevens, D. A. & Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271–1273 (2000).
(
10.1149/1.1393348
) / J. Electrochem. Soc. by DA Stevens (2000) -
Wenzel, S., Hara, T., Janek, J. & Adelhelm, P. Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342–3345 (2011).
(
10.1039/c1ee01744f
) / Energy Environ. Sci. by S Wenzel (2011) -
Delmas, C., Braconnier, J.-J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 3–4, 165–169 (1981).
(
10.1016/0167-2738(81)90076-X
) / Solid State Ionics by C Delmas (1981) -
Komaba, S., Takei, C., Nakayama, T., Ogata, A. & Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. Commun. 12, 355–358 (2010).
(
10.1016/j.elecom.2009.12.033
) / Electrochem. Commun. by S Komaba (2010) -
Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–U73 (2011).
(
10.1038/nmat2920
) / Nat. Mater. by R Berthelot (2011) -
Kim, D. et al. Layered Na Ni1/3Fe1/3Mn1/3 O-2 cathodes for Na-ion battery application. Electrochem. Commun. 18, 66–69 (2012).
(
10.1016/j.elecom.2012.02.020
) / Electrochem. Commun. by D Kim (2012) -
Yabuuchi, N. et al. P2-type Na-x Fe1/2Mn1/2 O-2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012).
(
10.1038/nmat3309
) / Nat. Mater. by N Yabuuchi (2012) -
Kim, D. et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 1, 333–336 (2011).
(
10.1002/aenm.201000061
) / Adv. Energy Mater. by D Kim (2011) -
Guignard, M. et al. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 12, 74–80 (2013).
(
10.1038/nmat3478
) / Nat. Mater. by M Guignard (2013) -
Carlier, D. et al. The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton. Trans. 40, 9306–9312 (2011).
(
10.1039/c1dt10798d
) / Dalton. Trans. by D Carlier (2011) -
Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J. M. & Prakash, A. S. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater. 24, 1846–1853 (2012).
(
10.1021/cm300466b
) / Chem. Mater. by M Sathiya (2012) -
Komaba, S. et al. Study on the reversible electrode reaction of Na1-xNi0.5 Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 51, 6211–6220 (2012).
(
10.1021/ic300357d
) / Inorg. Chem. by S Komaba (2012) -
Yoshida, H., Yabuuchi, N. & Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 34, 60–63 (2013).
(
10.1016/j.elecom.2013.05.012
) / Electrochem. Commun. by H Yoshida (2013) -
Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+C 99, 81–85 (1980).
(
10.1016/0378-4363(80)90214-4
) / Physica B+C by C Delmas (1980) -
Maazaz, A., Delmas, C. & Hagenmuller., D. A study of the NaxTiO2 system by electrochemical deintercalation. J. Incl. Phenom. 1, 45–51 (1983).
(
10.1007/BF00658014
) / J. Incl. Phenom. by A Maazaz (1983) -
Shilov, G. V., Nalbandyan, V. B., Volochaev, V. A. & Atovmyan, L. O. Crystal growth and crystal structures of the layered ionic conductors–sodium lithium titanium oxides. Int. J. Inorg. Mater. 2, 443–449 (2000).
(
10.1016/S1466-6049(00)00050-7
) / Int. J. Inorg. Mater. by GV Shilov (2000) -
De Boisse, B. M., Carlier, D., Guignard, M. & Delmas, C. Structural and electrochemical characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases prepared by auto-combustion synthesis for Na-ion batteries. J. Electrochem. Soc. 160, A569–A574 (2013).
(
10.1149/2.032304jes
) / J. Electrochem. Soc. by BM De Boisse (2013) -
Komaba, S. et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable NA batteries. ACS Appl. Mater. Interfaces 3, 4165–4168 (2011).
(
10.1021/am200973k
) / ACS Appl. Mater. Interfaces by S Komaba (2011) -
Ehrenberg, H. et al. The crystal and magnetic structure relationship in Cu(W-1-xMOx)O-4 compounds with wolframite-type structure. J. Phys.-Condes. Mat. 14, 8573–8581 (2002).
(
10.1088/0953-8984/14/36/313
) / J. Phys.-Condes. Mat. by H Ehrenberg (2002) -
Pan, H. et al. Sodium Storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater. doi:10.1002/aenm.201300139 (2013).
(
10.1002/aenm.201300139
)
Dates
Type | When |
---|---|
Created | 12 years ago (Aug. 27, 2013, 6:27 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 8:37 p.m.) |
Indexed | 13 hours, 25 minutes ago (Aug. 27, 2025, 11:35 a.m.) |
Issued | 12 years ago (Aug. 27, 2013) |
Published | 12 years ago (Aug. 27, 2013) |
Published Online | 12 years ago (Aug. 27, 2013) |
@article{Wang_2013, title={A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3365}, DOI={10.1038/ncomms3365}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wang, Yuesheng and Yu, Xiqian and Xu, Shuyin and Bai, Jianming and Xiao, Ruijuan and Hu, Yong-Sheng and Li, Hong and Yang, Xiao-Qing and Chen, Liquan and Huang, Xuejie}, year={2013}, month=aug }