Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M., & Gonze, X. (2013). Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nature Communications, 4(1).

Authors 5
  1. Geoffroy Hautier (first)
  2. Anna Miglio (additional)
  3. Gerbrand Ceder (additional)
  4. Gian-Marco Rignanese (additional)
  5. Xavier Gonze (additional)
References 59 Referenced 562
  1. Ginley, D. S. & Bright, C. Transparent conducting oxides. MRS Bull. 25, 15–18 (2000). (10.1557/mrs2000.256) / MRS Bull. by DS Ginley (2000)
  2. Fortunato, E., Barquinha, P. & Martins, R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012). (10.1002/adma.201103228) / Adv. Mater. by E Fortunato (2012)
  3. Granqvist, C. G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007). (10.1016/j.solmat.2007.04.031) / Sol. Energy Mater. Sol. Cells by CG Granqvist (2007)
  4. Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809–817 (2012). (10.1038/nphoton.2012.282) / Nat. Photonics by K Ellmer (2012)
  5. Ginley, D. S., Hosono, H. & Paine, D. C. Handbook of Transparent Conductors Springer (2011). (10.1007/978-1-4419-1638-9)
  6. Edwards, P. P., Porch, A., Jones, M. O., Morgan, D. V. & Perks, R. M. Basic materials physics of transparent conducting oxides. Dalton Trans. 19, 2995–3002 (2004). (10.1039/b408864f) / Dalton Trans. by PP Edwards (2004)
  7. Liu, H., Avrutin, V., Izyumskaya, N., Özgür, U. & Morkoç, H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48, 458–484 (2010). (10.1016/j.spmi.2010.08.011) / Superlattices Microstruct. by H Liu (2010)
  8. Beyer, W., Hüpkes, J. & Stiebig, H. Transparent conducting oxide films for thin film silicon photovoltaics. Thin Solid Films 516, 147–154 (2007). (10.1016/j.tsf.2007.08.110) / Thin Solid Films by W Beyer (2007)
  9. Kawazoe, H., Yanagi, H. & Ueda, K. Transparent p-type conducting oxides: design and fabrication of pn heterojunctions. MRS Bull. 25, 28–36 (2000). (10.1557/mrs2000.148) / MRS Bull. by H Kawazoe (2000)
  10. Ohta, H. Transparent oxide optoelectronics. Mater. Today 3, 42–51 (2004). (10.1016/S1369-7021(04)00288-3) / Mater. Today by H Ohta (2004)
  11. Wager, J. F., Keszler, D. A. & Presley, R. E. Transparent Electronics Springer (2007).
  12. Sheng, S., Fang, G., Li, C., Xu, S. & Zhao, X. p-type transparent conducting oxides. Phys. Status Solidi A 203, 1891–1900 (2006). (10.1002/pssa.200521479) / Phys. Status Solidi A by S Sheng (2006)
  13. Banerjee, A. & Chattopadhyay, K. Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Prog. Cryst. Growth Charact. Mater. 50, 52–105 (2005). (10.1016/j.pcrysgrow.2005.10.001) / Prog. Cryst. Growth Charact. Mater. by A Banerjee (2005)
  14. Kawazoe, H., Yasukawa, M. & Hyodo, H. p-type electrical conduction in transparent thin films of CuAlO2 . Nature 389, 939–942 (1997). (10.1038/40087) / Nature by H Kawazoe (1997)
  15. Nagarajan, R., Draeseke, A. D., Sleight, A. W. & Tate, J. p-type conductivity in CuCr1−xMgxO2 films and powders. J. Appl. Phys. 89, 8022–8025 (2001). (10.1063/1.1372636) / J. Appl. Phys. by R Nagarajan (2001)
  16. Kudo, A., Yanagi, H., Hosono, H. & Kawazoe, H. SrCu2O2: A p-type conductive oxide with wide band gap. Appl. Phys. Lett. 73, 220–222 (1998). (10.1063/1.121761) / Appl. Phys. Lett. by A Kudo (1998)
  17. Ohta, H. et al. Electronic structure and optical properties of SrCu2O2 . J. Appl. Phys. 91, 3074–3078 (2002). (10.1063/1.1445498) / J. Appl. Phys. by H Ohta (2002)
  18. Ueda, K., Inoue, S., Hirose, S., Kawazoe, H. & Hosono, H. Transparent p-type semiconductor: LaCuOS layered oxysulfide. Appl. Phys. Lett. 77, 2701–2703 (2000). (10.1063/1.1319507) / Appl. Phys. Lett. by K Ueda (2000)
  19. Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49, 299–312 (2010). (10.1016/j.commatsci.2010.05.010) / Comput. Mater. Sci. by W Setyawan (2010)
  20. Yang, K., Setyawan, W., Wang, S., Buongiorno Nardelli, M. & Curtarolo, S. A search model for topological insulators with high-throughput robustness descriptors. Nat. Mater. 11, 614–619 (2012). (10.1038/nmat3332) / Nat. Mater. by K Yang (2012)
  21. Hautier, G., Jain, A. & Ong, S. P. From the computer to the laboratory: materials discovery and design using first-principles calculations. J. Mater. Sci. 47, 7317–7340 (2012). (10.1007/s10853-012-6424-0) / J. Mater. Sci. by G Hautier (2012)
  22. Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011). (10.1016/j.commatsci.2011.02.023) / Comput. Mater. Sci. by A Jain (2011)
  23. Minami, T. Transparent and conductive multicomponent oxide films prepared by magnetron sputtering. J. Vac. Sci. Technol. A 17, 1765–1772 (1999). (10.1116/1.581888) / J. Vac. Sci. Technol. A by T Minami (1999)
  24. Medvedeva, J. E. & Hettiarachchi, C. L. Tuning the properties of complex transparent conducting oxides: role of crystal symmetry, chemical composition, and carrier generation. Phys. Rev. B 81, 125116 (2010). (10.1103/PhysRevB.81.125116) / Phys. Rev. B by JE Medvedeva (2010)
  25. Aulbur, W. G., Jonsson, L. & Wilkins, J. W. Quasiparticle calculations in solids. Solid State Phys. 54, 1–218 (1999). / Solid State Phys. by WG Aulbur (1999)
  26. Van Schilfgaarde, M., Kotani, T. & Faleev, S. Quasiparticle self-consistent GW theory. Phys. Rev. Lett. 96, 226402 (2006). (10.1103/PhysRevLett.96.226402) / Phys. Rev. Lett. by M Van Schilfgaarde (2006)
  27. Walsh, A. et al. Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. Phys. Rev. Lett. 100, 167402 (2008). (10.1103/PhysRevLett.100.167402) / Phys. Rev. Lett. by A Walsh (2008)
  28. Zunger, A. Practical doping principles. Appl. Phys. Lett. 83, 57–59 (2003). (10.1063/1.1584074) / Appl. Phys. Lett. by A Zunger (2003)
  29. Robertson, J. & Clark, S. Limits to doping in oxides. Phys. Rev. B 83, 075205 (2011). (10.1103/PhysRevB.83.075205) / Phys. Rev. B by J Robertson (2011)
  30. Scanlon, D. O. & Watson, G. W. On the possibility of p-type SnO2 . J. Mater. Chem. 22, 25236–25245 (2012). (10.1039/c2jm34352e) / J. Mater. Chem. by DO Scanlon (2012)
  31. Akashi, T., Itoh, T., Gunjishima, I. & Masumoto, H. Thermoelectric properties of hot-pressed boron suboxide (B6O). Mater. Trans. 43, 1719–1723 (2002). (10.2320/matertrans.43.1719) / Mater. Trans. by T Akashi (2002)
  32. Gerson, R. & Jaffe, H. Electrical conductivity in lead titanate zirconate ceramics. J. Phys. Chem. Solids 24, 979–984 (1963). (10.1016/0022-3697(63)90001-5) / J. Phys. Chem. Solids by R Gerson (1963)
  33. Shimada, T., Ueda, T., Wang, J. & Kitamura, T. Hybrid Hartree-Fock density functional study of charged point defects in ferroelectric PbTiO3 . Phys. Rev. B 87, 174111 (2013). (10.1103/PhysRevB.87.174111) / Phys. Rev. B by T Shimada (2013)
  34. Malyi, O. I., Wu, P., Kulish, V. V., Bai, K. & Chen, Z. Formation and migration of oxygen and zirconium vacancies in cubic zirconia and zirconium oxysulfide. Solid State Ionics 212, 117–122 (2012). (10.1016/j.ssi.2012.01.031) / Solid State Ionics by OI Malyi (2012)
  35. Trimarchi, G. et al. Using design principles to systematically plan the synthesis of hole-conducting transparent oxides: Cu3VO4 and Ag3VO4 as a case study. Phys. Rev. B 84, 165116 (2011). (10.1103/PhysRevB.84.165116) / Phys. Rev. B by G Trimarchi (2011)
  36. Raebiger, H., Lany, S. & Zunger, A. Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys. Rev. B 76, 045209 (2007). (10.1103/PhysRevB.76.045209) / Phys. Rev. B by H Raebiger (2007)
  37. Hamada, I. & Katayama-Yoshida, H. Energetics of native defects in CuAlO2 . Physica B 377, 808–811 (2006). (10.1016/j.physb.2005.12.202) / Physica B by I Hamada (2006)
  38. Barquinha, P., Martins, R., Pereira, L. & Fortunato, E. Transparent Oxide Electronics: From Materials to Devices Wiley (2012)) 4. (10.1002/9781119966999)
  39. Walsh, A., Payne, D. J., Egdell, R. G. & Watson, G. W. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455–4463 (2011). (10.1039/c1cs15098g) / Chem. Soc. Rev. by A Walsh (2011)
  40. Walsh, A., Yan, Y. & Huda, M. Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem. Mater. 21, 547–551 (2009). (10.1021/cm802894z) / Chem. Mater. by A Walsh (2009)
  41. Fortunato, E. et al. Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Appl. Phys. Lett. 97, 052105 (2010). (10.1063/1.3469939) / Appl. Phys. Lett. by E Fortunato (2010)
  42. Ogo, Y. et al. p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 93, 032113 (2008). (10.1063/1.2964197) / Appl. Phys. Lett. by Y Ogo (2008)
  43. Moustafa, M., Zandt, T., Janowitz, C. & Manzke, R. Growth and band gap determination of the ZrSxSe2−x single crystal series. Phys. Rev. B 80, 035206 (2009). (10.1103/PhysRevB.80.035206) / Phys. Rev. B by M Moustafa (2009)
  44. Grüning, M., Shaltaf, R. & Rignanese, G.-M. Quasiparticle calculations of the electronic properties of ZrO2 and HfO2 polymorphs and their interface with Si. Phys. Rev. B 81, 035330 (2010). (10.1103/PhysRevB.81.035330) / Phys. Rev. B by M Grüning (2010)
  45. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput. Mater. Sci. by G Kresse (1996)
  46. Blöchl, P. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by P Blöchl (1994)
  47. Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by J Perdew (1996)
  48. Curtarolo, S. et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012). (10.1016/j.commatsci.2012.02.002) / Comput. Mater. Sci. by S Curtarolo (2012)
  49. Madsen, G. K. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). (10.1016/j.cpc.2006.03.007) / Comput. Phys. Commun. by GK Madsen (2006)
  50. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013). (10.1016/j.commatsci.2012.10.028) / Comput. Mater. Sci. by SP Ong (2013)
  51. Gonze, X. et al. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009). (10.1016/j.cpc.2009.07.007) / Comput. Phys. Commun. by X Gonze (2009)
  52. Perdew, J. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 244–249 (1992). (10.1103/PhysRevB.45.13244) / Phys. Rev. B by J Perdew (1992)
  53. Godby, R. & Needs, R. Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. Phys. Rev. Lett. 62, 1169–1172 (1989). (10.1103/PhysRevLett.62.1169) / Phys. Rev. Lett. by R Godby (1989)
  54. Stankovski, M. et al. G0W0 band gap of ZnO: effects of plasmon-pole models. Phys. Rev. B 84, 241201 (2011). (10.1103/PhysRevB.84.241201) / Phys. Rev. B by M Stankovski (2011)
  55. Miglio, A. et al. Effects of plasmon pole models on the G0W0 electronic structure of various oxides. Eur. Phys. J. B 85, 322 (2012). (10.1140/epjb/e2012-30121-4) / Eur. Phys. J. B by A Miglio (2012)
  56. Yu, L., Kokenyesi, R. S., Keszler, D. A. & Zunger, A. Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43–48 (2013). (10.1002/aenm.201200538) / Adv. Energy Mater. by L Yu (2013)
  57. Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006). (10.1103/PhysRevB.73.045112) / Phys. Rev. B by M Gajdoš (2006)
  58. Freysoldt, C., Neugebauer, J. & Van de Walle, C. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009). (10.1103/PhysRevLett.102.016402) / Phys. Rev. Lett. by C Freysoldt (2009)
  59. Lany, S. & Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008). (10.1103/PhysRevB.78.235104) / Phys. Rev. B by S Lany (2008)
Dates
Type When
Created 12 years ago (Aug. 13, 2013, 6:21 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:29 p.m.)
Indexed 3 days, 3 hours ago (Aug. 19, 2025, 6 a.m.)
Issued 12 years ago (Aug. 13, 2013)
Published 12 years ago (Aug. 13, 2013)
Published Online 12 years ago (Aug. 13, 2013)
Funders 0

None

@article{Hautier_2013, title={Identification and design principles of low hole effective mass p-type transparent conducting oxides}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3292}, DOI={10.1038/ncomms3292}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Hautier, Geoffroy and Miglio, Anna and Ceder, Gerbrand and Rignanese, Gian-Marco and Gonze, Xavier}, year={2013}, month=aug }