Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Liu, M., Jing, D., Zhou, Z., & Guo, L. (2013). Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nature Communications, 4(1).

Authors 4
  1. Maochang Liu (first)
  2. Dengwei Jing (additional)
  3. Zhaohui Zhou (additional)
  4. Liejin Guo (additional)
References 58 Referenced 368
  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). (10.1038/238037a0) / Nature by A Fujishima (1972)
  2. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995). (10.1021/ar00051a007) / Acc. Chem. Res. by AJ Bard (1995)
  3. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). (10.1039/B800489G) / Chem. Soc. Rev. by A Kudo (2009)
  4. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012). (10.1038/nphoton.2012.175) / Nat. Photon. by Y Tachibana (2012)
  5. Li, Z., Luo, W., Zhang, M., Feng, J. & Zou, Z. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 6, 347–370 (2013). (10.1039/C2EE22618A) / Energy Environ. Sci. by Z Li (2013)
  6. Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010). (10.1021/cr1001645) / Chem. Rev. by X Chen (2010)
  7. Reber, J. & Rusek, M. Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J. Phys. Chem. 90, 824–834 (1986). (10.1021/j100277a024) / J. Phys. Chem. by J Reber (1986)
  8. Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001). (10.1038/414625a) / Nature by Z Zou (2001)
  9. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295–295 (2006). (10.1038/440295a) / Nature by K Maeda (2006)
  10. Xu, X., Randorn, C., Efstathiou, P. & Irvine, J. T. S. A red metallic oxide photocatalyst. Nat. Mater. 11, 595–598 (2012). (10.1038/nmat3312) / Nat. Mater. by X Xu (2012)
  11. Kato, H., Asakura, K. & Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003). (10.1021/ja027751g) / J. Am. Chem. Soc. by H Kato (2003)
  12. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). (10.1038/nmat2317) / Nat. Mater. by X Wang (2009)
  13. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). (10.1126/science.1200448) / Science by X Chen (2011)
  14. Mukherji, A. et al. N-doped CsTaWO6 as a new photocatalyst for hydrogen production from water splitting under solar irradiation. Adv. Funct. Mater. 21, 126–132 (2011). (10.1002/adfm.201000591) / Adv. Funct. Mater. by A Mukherji (2011)
  15. Maeda, K. et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005). (10.1021/ja0518777) / J. Am. Chem. Soc. by K Maeda (2005)
  16. Zhang, W., Wang, Y., Wang, Z., Zhong, Z. & Xu, R. Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 46, 7631–7633 (2010). (10.1039/c0cc01562h) / Chem. Commun. by W Zhang (2010)
  17. Liu, M., Du, Y., Ma, L., Jing, D. & Guo, L. Manganese doped cadmium sulfide nanocrystal for hydrogen production from water under visible light. Int. J. Hydrogen Energy 37, 730–736 (2012). (10.1016/j.ijhydene.2011.04.111) / Int. J. Hydrogen Energy by M Liu (2012)
  18. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. & Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 5, 782–786 (2006). (10.1038/nmat1734) / Nat. Mater. by H Tada (2006)
  19. Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A. & Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011). (10.1021/ja203296z) / J. Am. Chem. Soc. by A Iwase (2011)
  20. Yan, H. et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 266, 165–168 (2009). (10.1016/j.jcat.2009.06.024) / J. Catal. by H Yan (2009)
  21. Mayer, M. T., Lin, Y., Yuan, G. & Wang, D. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013). (10.1021/ar300302z) / Acc. Chem. Res. by MT Mayer (2013)
  22. Wang, X. et al. Photocatalytic overall water splitting promoted by an α–β phase junction on Ga2O3 . Angew. Chem. Int. Ed. 51, 13089–13092 (2012). (10.1002/anie.201207554) / Angew. Chem. Int. Ed. by X Wang (2012)
  23. Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008). (10.1021/ja8007825) / J. Am. Chem. Soc. by X Zong (2008)
  24. Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008). (10.1038/nature07570) / Nature by RE Algra (2008)
  25. Akiyama, T., Yamashita, T., Nakamura, K. & Ito, T. Band alignment tuning in twin-plane superlattices of semiconductor nanowires. Nano. Lett. 10, 4614–4618 (2010). (10.1021/nl1027099) / Nano. Lett. by T Akiyama (2010)
  26. Li, Q. et al. Size-dependent periodically twinned ZnSe nanowires. Adv. Mater. 16, 1436–1440 (2004). (10.1002/adma.200306648) / Adv. Mater. by Q Li (2004)
  27. Caroff, P. et al. Controlled polytypic and twin-plane superlattices in iii-v nanowires. Nat. Nanotech. 4, 50–55 (2009). (10.1038/nnano.2008.359) / Nat. Nanotech. by P Caroff (2009)
  28. Yan, Y., Noufi, R. & Al-Jassim, M. M. Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory. Phys. Rev. Lett. 96, 205501 (2006). (10.1103/PhysRevLett.96.205501) / Phys. Rev. Lett. by Y Yan (2006)
  29. Verheijen, M. A., Immink, G., de Smet, T., Borgström, M. T. & Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP-GaAs nanowires. J. Am. Chem. Soc. 128, 1353–1359 (2006). (10.1021/ja057157h) / J. Am. Chem. Soc. by MA Verheijen (2006)
  30. Xiong, Q., Wang, J. & Eklund, P. C. Coherent twinning phenomena: towards twinning superlattices in III−V semiconducting nanowires. Nano. Lett. 6, 2736–2742 (2006). (10.1021/nl0616983) / Nano. Lett. by Q Xiong (2006)
  31. Liu, M., Wang, L., Lu, G., Yao, X. & Guo, L. Twins in Cd1-xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 4, 1372–1378 (2011). (10.1039/c0ee00604a) / Energy Environ. Sci. by M Liu (2011)
  32. Chen, M. et al. Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003). (10.1126/science.1083727) / Science by M Chen (2003)
  33. Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004). (10.1126/science.1092905) / Science by L Lu (2004)
  34. Priya, R. & Kanmani, S. Batch slurry photocatalytic reactors for the generation of hydrogen from sulfide and sulfite waste streams under solar irradiation. Solar Energy 83, 1802–1805 (2009). (10.1016/j.solener.2009.06.012) / Solar Energy by R Priya (2009)
  35. Yang, Y. et al. Twinned Zn2TiO4 spinel nanowires using ZnO nanowires as a template. Adv. Mater. 19, 1839–1844 (2007). (10.1002/adma.200700299) / Adv. Mater. by Y Yang (2007)
  36. Wei, S.-H. & Zhang, S. B. Structure stability and carrier localization in CdX (X=S, Se, Te) semiconductors. Phys. Rev. B 62, 6944–6947 (2000). (10.1103/PhysRevB.62.6944) / Phys. Rev. B by S-H Wei (2000)
  37. Murayama, M. & Nakayama, T. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 49, 4710–4724 (1994). (10.1103/PhysRevB.49.4710) / Phys. Rev. B by M Murayama (1994)
  38. Kim, Y. II, Atherton, S., Brigham, E. S. & Mallouk, T. E. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem. 97, 11802–11810 (1993). (10.1021/j100147a038) / J. Phys. Chem. by Y Kim II (1993)
  39. Maeda, K. et al. Photocatalytic Overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew. Chem. Int. Ed. 49, 4096–4099 (2010). (10.1002/anie.201001259) / Angew. Chem. Int. Ed. by K Maeda (2010)
  40. Johansson, J. et al. Structural properties of <111> B-oriented III-V nanowires. Nat. Mater. 5, 574–580 (2006). (10.1038/nmat1677) / Nat. Mater. by J Johansson (2006)
  41. Tong, H. et al. Lead chalcogenide nanotubes synthesized by biomolecule-assisted self-assembly of nanocrystals at room temperature. Angew. Chem. 118, 7903–7906 (2006). (10.1002/ange.200602952) / Angew. Chem. by H Tong (2006)
  42. Mi, L. et al. One-pot synthesis and the electrochemical properties of nano-structured nickel selenide materials with hierarchical structure. Cryst. Eng. Comm. 15, 2624–2630 (2013). (10.1039/c3ce26754g) / Cryst. Eng. Comm. by L Mi (2013)
  43. Hu, Q. et al. Selective preparation and enhanced microwave electromagnetic characteristics of polymorphous ZnO architectures made from a facile one-step ethanediamine-assisted hydrothermal approach. Cryst. Eng. Comm. 15, 1314–1323 (2013). (10.1039/c2ce26757h) / Cryst. Eng. Comm. by Q Hu (2013)
  44. Jin, R., Chen, G., Wang, Q., Sun, J. & Wang, Y. A facile solvothermal synthesis of hierarchical Sb2Se3 nanostructures with high electrochemical hydrogen storage ability. J. Mater. Chem. 21, 6628–6635 (2011). (10.1039/c0jm04392c) / J. Mater. Chem. by R Jin (2011)
  45. Jin, R., Chen, G., Pei, J., Xua, H. & Lv, Z. S. Solvothermal synthesis and growth mechanism of ultrathin Sb2Te3 hexagonal nanoplates with thermoelectric transport properties. RSC Adv. 2, 1450–1456 (2012). (10.1039/C1RA00642H) / RSC Adv. by R Jin (2012)
  46. Glas, F., Harmand, J.-C. & Patriarche, G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys. Rev. Lett. 99, 146101 (2007). (10.1103/PhysRevLett.99.146101) / Phys. Rev. Lett. by F Glas (2007)
  47. Hurlea, D. T. J. & Rudolph, P. A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. J. Crystal Growth 264, 550–564 (2004). (10.1016/j.jcrysgro.2003.12.035) / J. Crystal Growth by DTJ Hurlea (2004)
  48. Korgel, B. A. Semiconductor nanowires: Twins cause kinks. Nat. Mater. 5, 521–522 (2006). (10.1038/nmat1688) / Nat. Mater. by BA Korgel (2006)
  49. Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). (10.1126/science.1124005) / Science by ZL Wang (2006)
  50. Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P. & Walker, A. B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 130, 13364–13372 (2008). (10.1021/ja804852z) / J. Am. Chem. Soc. by JR Jennings (2008)
  51. Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W. & Lian, T. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 134, 10337–10340 (2012). (10.1021/ja303306u) / J. Am. Chem. Soc. by K Wu (2012)
  52. Lin, Y. J. et al. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J. Am. Chem. Soc. 134, 5508–5511 (2012). (10.1021/ja300319g) / J. Am. Chem. Soc. by YJ Lin (2012)
  53. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  54. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput. Mater. Sci. by G Kresse (1996)
  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  56. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  57. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by HJ Monkhorst (1976)
  58. Qteish, A., Heine, V. & Needs, R. J. Polarization, band lineups, and stability of SiC polytypes. Phys. Rev. B 45, 6534–6542 (1992). (10.1103/PhysRevB.45.6534) / Phys. Rev. B by A Qteish (1992)
Dates
Type When
Created 11 years, 11 months ago (Sept. 3, 2013, 5:55 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:30 p.m.)
Indexed 1 week, 5 days ago (Aug. 12, 2025, 5:25 p.m.)
Issued 11 years, 11 months ago (Sept. 3, 2013)
Published 11 years, 11 months ago (Sept. 3, 2013)
Published Online 11 years, 11 months ago (Sept. 3, 2013)
Funders 0

None

@article{Liu_2013, title={Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3278}, DOI={10.1038/ncomms3278}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Liu, Maochang and Jing, Dengwei and Zhou, Zhaohui and Guo, Liejin}, year={2013}, month=sep }