Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
58
Referenced
368
-
Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
(
10.1038/238037a0
) / Nature by A Fujishima (1972) -
Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).
(
10.1021/ar00051a007
) / Acc. Chem. Res. by AJ Bard (1995) -
Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).
(
10.1039/B800489G
) / Chem. Soc. Rev. by A Kudo (2009) -
Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012).
(
10.1038/nphoton.2012.175
) / Nat. Photon. by Y Tachibana (2012) -
Li, Z., Luo, W., Zhang, M., Feng, J. & Zou, Z. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 6, 347–370 (2013).
(
10.1039/C2EE22618A
) / Energy Environ. Sci. by Z Li (2013) -
Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).
(
10.1021/cr1001645
) / Chem. Rev. by X Chen (2010) -
Reber, J. & Rusek, M. Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J. Phys. Chem. 90, 824–834 (1986).
(
10.1021/j100277a024
) / J. Phys. Chem. by J Reber (1986) -
Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).
(
10.1038/414625a
) / Nature by Z Zou (2001) -
Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295–295 (2006).
(
10.1038/440295a
) / Nature by K Maeda (2006) -
Xu, X., Randorn, C., Efstathiou, P. & Irvine, J. T. S. A red metallic oxide photocatalyst. Nat. Mater. 11, 595–598 (2012).
(
10.1038/nmat3312
) / Nat. Mater. by X Xu (2012) -
Kato, H., Asakura, K. & Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003).
(
10.1021/ja027751g
) / J. Am. Chem. Soc. by H Kato (2003) -
Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).
(
10.1038/nmat2317
) / Nat. Mater. by X Wang (2009) -
Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).
(
10.1126/science.1200448
) / Science by X Chen (2011) -
Mukherji, A. et al. N-doped CsTaWO6 as a new photocatalyst for hydrogen production from water splitting under solar irradiation. Adv. Funct. Mater. 21, 126–132 (2011).
(
10.1002/adfm.201000591
) / Adv. Funct. Mater. by A Mukherji (2011) -
Maeda, K. et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005).
(
10.1021/ja0518777
) / J. Am. Chem. Soc. by K Maeda (2005) -
Zhang, W., Wang, Y., Wang, Z., Zhong, Z. & Xu, R. Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 46, 7631–7633 (2010).
(
10.1039/c0cc01562h
) / Chem. Commun. by W Zhang (2010) -
Liu, M., Du, Y., Ma, L., Jing, D. & Guo, L. Manganese doped cadmium sulfide nanocrystal for hydrogen production from water under visible light. Int. J. Hydrogen Energy 37, 730–736 (2012).
(
10.1016/j.ijhydene.2011.04.111
) / Int. J. Hydrogen Energy by M Liu (2012) -
Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. & Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 5, 782–786 (2006).
(
10.1038/nmat1734
) / Nat. Mater. by H Tada (2006) -
Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A. & Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011).
(
10.1021/ja203296z
) / J. Am. Chem. Soc. by A Iwase (2011) -
Yan, H. et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 266, 165–168 (2009).
(
10.1016/j.jcat.2009.06.024
) / J. Catal. by H Yan (2009) -
Mayer, M. T., Lin, Y., Yuan, G. & Wang, D. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013).
(
10.1021/ar300302z
) / Acc. Chem. Res. by MT Mayer (2013) -
Wang, X. et al. Photocatalytic overall water splitting promoted by an α–β phase junction on Ga2O3 . Angew. Chem. Int. Ed. 51, 13089–13092 (2012).
(
10.1002/anie.201207554
) / Angew. Chem. Int. Ed. by X Wang (2012) -
Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008).
(
10.1021/ja8007825
) / J. Am. Chem. Soc. by X Zong (2008) -
Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).
(
10.1038/nature07570
) / Nature by RE Algra (2008) -
Akiyama, T., Yamashita, T., Nakamura, K. & Ito, T. Band alignment tuning in twin-plane superlattices of semiconductor nanowires. Nano. Lett. 10, 4614–4618 (2010).
(
10.1021/nl1027099
) / Nano. Lett. by T Akiyama (2010) -
Li, Q. et al. Size-dependent periodically twinned ZnSe nanowires. Adv. Mater. 16, 1436–1440 (2004).
(
10.1002/adma.200306648
) / Adv. Mater. by Q Li (2004) -
Caroff, P. et al. Controlled polytypic and twin-plane superlattices in iii-v nanowires. Nat. Nanotech. 4, 50–55 (2009).
(
10.1038/nnano.2008.359
) / Nat. Nanotech. by P Caroff (2009) -
Yan, Y., Noufi, R. & Al-Jassim, M. M. Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory. Phys. Rev. Lett. 96, 205501 (2006).
(
10.1103/PhysRevLett.96.205501
) / Phys. Rev. Lett. by Y Yan (2006) -
Verheijen, M. A., Immink, G., de Smet, T., Borgström, M. T. & Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP-GaAs nanowires. J. Am. Chem. Soc. 128, 1353–1359 (2006).
(
10.1021/ja057157h
) / J. Am. Chem. Soc. by MA Verheijen (2006) -
Xiong, Q., Wang, J. & Eklund, P. C. Coherent twinning phenomena: towards twinning superlattices in III−V semiconducting nanowires. Nano. Lett. 6, 2736–2742 (2006).
(
10.1021/nl0616983
) / Nano. Lett. by Q Xiong (2006) -
Liu, M., Wang, L., Lu, G., Yao, X. & Guo, L. Twins in Cd1-xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 4, 1372–1378 (2011).
(
10.1039/c0ee00604a
) / Energy Environ. Sci. by M Liu (2011) -
Chen, M. et al. Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003).
(
10.1126/science.1083727
) / Science by M Chen (2003) -
Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).
(
10.1126/science.1092905
) / Science by L Lu (2004) -
Priya, R. & Kanmani, S. Batch slurry photocatalytic reactors for the generation of hydrogen from sulfide and sulfite waste streams under solar irradiation. Solar Energy 83, 1802–1805 (2009).
(
10.1016/j.solener.2009.06.012
) / Solar Energy by R Priya (2009) -
Yang, Y. et al. Twinned Zn2TiO4 spinel nanowires using ZnO nanowires as a template. Adv. Mater. 19, 1839–1844 (2007).
(
10.1002/adma.200700299
) / Adv. Mater. by Y Yang (2007) -
Wei, S.-H. & Zhang, S. B. Structure stability and carrier localization in CdX (X=S, Se, Te) semiconductors. Phys. Rev. B 62, 6944–6947 (2000).
(
10.1103/PhysRevB.62.6944
) / Phys. Rev. B by S-H Wei (2000) -
Murayama, M. & Nakayama, T. Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 49, 4710–4724 (1994).
(
10.1103/PhysRevB.49.4710
) / Phys. Rev. B by M Murayama (1994) -
Kim, Y. II, Atherton, S., Brigham, E. S. & Mallouk, T. E. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem. 97, 11802–11810 (1993).
(
10.1021/j100147a038
) / J. Phys. Chem. by Y Kim II (1993) -
Maeda, K. et al. Photocatalytic Overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew. Chem. Int. Ed. 49, 4096–4099 (2010).
(
10.1002/anie.201001259
) / Angew. Chem. Int. Ed. by K Maeda (2010) -
Johansson, J. et al. Structural properties of <111> B-oriented III-V nanowires. Nat. Mater. 5, 574–580 (2006).
(
10.1038/nmat1677
) / Nat. Mater. by J Johansson (2006) -
Tong, H. et al. Lead chalcogenide nanotubes synthesized by biomolecule-assisted self-assembly of nanocrystals at room temperature. Angew. Chem. 118, 7903–7906 (2006).
(
10.1002/ange.200602952
) / Angew. Chem. by H Tong (2006) -
Mi, L. et al. One-pot synthesis and the electrochemical properties of nano-structured nickel selenide materials with hierarchical structure. Cryst. Eng. Comm. 15, 2624–2630 (2013).
(
10.1039/c3ce26754g
) / Cryst. Eng. Comm. by L Mi (2013) -
Hu, Q. et al. Selective preparation and enhanced microwave electromagnetic characteristics of polymorphous ZnO architectures made from a facile one-step ethanediamine-assisted hydrothermal approach. Cryst. Eng. Comm. 15, 1314–1323 (2013).
(
10.1039/c2ce26757h
) / Cryst. Eng. Comm. by Q Hu (2013) -
Jin, R., Chen, G., Wang, Q., Sun, J. & Wang, Y. A facile solvothermal synthesis of hierarchical Sb2Se3 nanostructures with high electrochemical hydrogen storage ability. J. Mater. Chem. 21, 6628–6635 (2011).
(
10.1039/c0jm04392c
) / J. Mater. Chem. by R Jin (2011) -
Jin, R., Chen, G., Pei, J., Xua, H. & Lv, Z. S. Solvothermal synthesis and growth mechanism of ultrathin Sb2Te3 hexagonal nanoplates with thermoelectric transport properties. RSC Adv. 2, 1450–1456 (2012).
(
10.1039/C1RA00642H
) / RSC Adv. by R Jin (2012) -
Glas, F., Harmand, J.-C. & Patriarche, G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys. Rev. Lett. 99, 146101 (2007).
(
10.1103/PhysRevLett.99.146101
) / Phys. Rev. Lett. by F Glas (2007) -
Hurlea, D. T. J. & Rudolph, P. A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. J. Crystal Growth 264, 550–564 (2004).
(
10.1016/j.jcrysgro.2003.12.035
) / J. Crystal Growth by DTJ Hurlea (2004) -
Korgel, B. A. Semiconductor nanowires: Twins cause kinks. Nat. Mater. 5, 521–522 (2006).
(
10.1038/nmat1688
) / Nat. Mater. by BA Korgel (2006) -
Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).
(
10.1126/science.1124005
) / Science by ZL Wang (2006) -
Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P. & Walker, A. B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 130, 13364–13372 (2008).
(
10.1021/ja804852z
) / J. Am. Chem. Soc. by JR Jennings (2008) -
Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W. & Lian, T. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 134, 10337–10340 (2012).
(
10.1021/ja303306u
) / J. Am. Chem. Soc. by K Wu (2012) -
Lin, Y. J. et al. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J. Am. Chem. Soc. 134, 5508–5511 (2012).
(
10.1021/ja300319g
) / J. Am. Chem. Soc. by YJ Lin (2012) -
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / Comput. Mater. Sci. by G Kresse (1996) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) -
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
(
10.1103/PhysRevB.13.5188
) / Phys. Rev. B by HJ Monkhorst (1976) -
Qteish, A., Heine, V. & Needs, R. J. Polarization, band lineups, and stability of SiC polytypes. Phys. Rev. B 45, 6534–6542 (1992).
(
10.1103/PhysRevB.45.6534
) / Phys. Rev. B by A Qteish (1992)
Dates
Type | When |
---|---|
Created | 11 years, 11 months ago (Sept. 3, 2013, 5:55 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 8:30 p.m.) |
Indexed | 1 week, 5 days ago (Aug. 12, 2025, 5:25 p.m.) |
Issued | 11 years, 11 months ago (Sept. 3, 2013) |
Published | 11 years, 11 months ago (Sept. 3, 2013) |
Published Online | 11 years, 11 months ago (Sept. 3, 2013) |
@article{Liu_2013, title={Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3278}, DOI={10.1038/ncomms3278}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Liu, Maochang and Jing, Dengwei and Zhou, Zhaohui and Guo, Liejin}, year={2013}, month=sep }