Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Yan, W., He, W.-Y., Chu, Z.-D., Liu, M., Meng, L., Dou, R.-F., Zhang, Y., Liu, Z., Nie, J.-C., & He, L. (2013). Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nature Communications, 4(1).

Authors 10
  1. Wei Yan (first)
  2. Wen-Yu He (additional)
  3. Zhao-Dong Chu (additional)
  4. Mengxi Liu (additional)
  5. Lan Meng (additional)
  6. Rui-Fen Dou (additional)
  7. Yanfeng Zhang (additional)
  8. Zhongfan Liu (additional)
  9. Jia-Cai Nie (additional)
  10. Lin He (additional)
References 58 Referenced 177
  1. Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). (10.1103/RevModPhys.81.109) / Rev. Mod. Phys. by AH Castro Neto (2009)
  2. Vozmediano, M. A. H., Katsnelson, M. I. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010). (10.1016/j.physrep.2010.07.003) / Phys. Rep. by MAH Vozmediano (2010)
  3. Altland, A. Low-energy theory of disordered graphene. Phys. Rev. Lett. 97, 236802 (2006). (10.1103/PhysRevLett.97.236802) / Phys. Rev. Lett. by A Altland (2006)
  4. de Juan, F., Cortijo, A. & Vozmediano, M. A. H. Charge inhomogeneities due to smooth ripples in graphene sheets. Phys. Rev. B 76, 165409 (2007). (10.1103/PhysRevB.76.165409) / Phys. Rev. B by F de Juan (2007)
  5. Guinea, F., Horovitz, B. & Le Doussal, P. Gauge field induced by ripples in graphene. Phys. Rev. B 77, 205421 (2008). (10.1103/PhysRevB.77.205421) / Phys. Rev. B by F Guinea (2008)
  6. Kim, E.-A. & Castro Neto, A. H. Graphene as an electronic membrane. EPL 84, 57007 (2008). (10.1209/0295-5075/84/57007) / EPL by E-A Kim (2008)
  7. Guinea, F., Katsnelson, M. & Vozmediano, M. Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B 77, 075422 (2008). (10.1103/PhysRevB.77.075422) / Phys. Rev. B by F Guinea (2008)
  8. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010). (10.1038/nphys1420) / Nat. Phys. by F Guinea (2010)
  9. Guinea, F., Geim, A. K., Katsnelson, M. I. & Novoselov, K. S. Generating quantizing pseudomagnetic fields by bending graphene ribbons. Phys. Rev. B 81, 035408 (2010). (10.1103/PhysRevB.81.035408) / Phys. Rev. B by F Guinea (2010)
  10. de Juan, F., Cortijo, A., Vozmediano, M. A. H. & Cano, A. Aharonov-Bohm interferences from local deformations in graphene. Nat. Phys. 7, 810–815 (2011). (10.1038/nphys2034) / Nat. Phys. by F de Juan (2011)
  11. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010). (10.1126/science.1191700) / Science by N Levy (2010)
  12. Yan, H., Sun, Y., He, L., Nie, J.-C. & Chan, M. H. W. Observation of Landau-level-like quantization at 77 K along a strained-induced graphene ridge. Phys. Rev. B 85, 035422 (2012). (10.1103/PhysRevB.85.035422) / Phys. Rev. B by H Yan (2012)
  13. Guo, D. et al. Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field. Nat. Commun. 3, 1068 (2012). (10.1038/ncomms2072) / Nat. Commun. by D Guo (2012)
  14. Meng, L. et al. Strain-induced one-dimensional Landau level quantization in corrugated graphene. Phys. Rev. B 87, 205405 (2013). (10.1103/PhysRevB.87.205405) / Phys. Rev. B by L Meng (2013)
  15. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012). (10.1038/nature10941) / Nature by KK Gomes (2012)
  16. McCann, E. & Fal’ko, V. Landau-Level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006). (10.1103/PhysRevLett.96.086805) / Phys. Rev. Lett. by E McCann (2006)
  17. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006). (10.1038/nphys245) / Nat. Phys. by KS Novoselov (2006)
  18. Rutter, G. M. et al. Microscopic polarization in bilayer graphene. Nat. Phys. 7, 649–655 (2011). (10.1038/nphys1988) / Nat. Phys. by GM Rutter (2011)
  19. Li, Z. et al. Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys. Rev. Lett. 102, 037403 (2009). (10.1103/PhysRevLett.102.037403) / Phys. Rev. Lett. by Z Li (2009)
  20. Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene Bilayer with a Twist: Electronic Structure. Phys. Rev. Lett. 99, 256802 (2007). (10.1103/PhysRevLett.99.256802) / Phys. Rev. Lett. by JMB Lopes dos Santos (2007)
  21. Mayorov, A. S. et al. Interaction-driven spectrum reconstruction in bilayer graphene. Science 333, 860–863 (2011). (10.1126/science.1208683) / Science by AS Mayorov (2011)
  22. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010). (10.1038/nphys1463) / Nat. Phys. by G Li (2010)
  23. Luican, A. et al. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011). (10.1103/PhysRevLett.106.126802) / Phys. Rev. Lett. by A Luican (2011)
  24. Hicks, J. et al. Symmetry breaking in commensurate graphene rotational stacking: comparison of theory and experiment. Phys. Rev. B 83, 205403 (2011). (10.1103/PhysRevB.83.205403) / Phys. Rev. B by J Hicks (2011)
  25. Miller, D. L. et al. Real-space mapping of magnetically quantized graphene states. Nat. Phys. 6, 811–817 (2010). (10.1038/nphys1736) / Nat. Phys. by DL Miller (2010)
  26. Yan, W. et al. Angle dependent Van Hove singularities in slightly twisted graphene bilayer. Phys. Rev. Lett. 109, 126801 (2012). (10.1103/PhysRevLett.109.126801) / Phys. Rev. Lett. by W Yan (2012)
  27. Brihuega, I. et al. Unravelling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene. Phys. Rev. Lett. 109, 196802 (2012). (10.1103/PhysRevLett.109.196802) / Phys. Rev. Lett. by I Brihuega (2012)
  28. Wang, Z. F., Liu, F. & Chou, M. Y. Fractal Landau-level spectra in twisted bilayer graphene. Nano Lett. 12, 3383 (2012). / Nano Lett. by ZF Wang (2012)
  29. San-Jose, P., González, J. & Guinea, F. Non-Abelian gauge potentials in graphene bilayers. Phys. Rev. Lett. 108, 216802 (2012). (10.1103/PhysRevLett.108.216802) / Phys. Rev. Lett. by P San-Jose (2012)
  30. Mucha-Kruczyński, M., Aleiner, I. L. & Fal’ko, V. I. Strained bilayer graphene: band structure topology and Landau level spectrum. Phys. Rev. B 84, 041404 (2011). (10.1103/PhysRevB.84.041404) / Phys. Rev. B by M Mucha-Kruczyński (2011)
  31. Nanda, B. & Satpathy, S. Strain and electric field modulation of the electronic structure of bilayer graphene. Phys. Rev. B 80, 165430 (2009). (10.1103/PhysRevB.80.165430) / Phys. Rev. B by B Nanda (2009)
  32. Verberck, B., Partoens, B., Peeters, F. & Trauzettel, B. Strain-induced band gaps in bilayer graphene. Phys. Rev. B 85, 125403 (2012). (10.1103/PhysRevB.85.125403) / Phys. Rev. B by B Verberck (2012)
  33. Marinani, E., Pearce, A. J. & Oppen, F. V. Fictitious gauge felds in bilayer graphene. Phys. Rev. B 86, 165448 (2012). (10.1103/PhysRevB.86.165448) / Phys. Rev. B by E Marinani (2012)
  34. Choi, S. M., Jhi, S. H. & Son, Y. W. Controlling energy gap of bilayer graphene by strain. Nano Lett. 10, 3486–3489 (2010). (10.1021/nl101617x) / Nano Lett. by SM Choi (2010)
  35. Semenoff, G., Semenoff, V. & Zhou, F. Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008). (10.1103/PhysRevLett.101.087204) / Phys. Rev. Lett. by G Semenoff (2008)
  36. Young, A. F. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nat. Phys. 8, 550–556 (2012). (10.1038/nphys2307) / Nat. Phys. by AF Young (2012)
  37. Gao, T. et al. Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition. ACS Nano 5, 9194–9201 (2011). (10.1021/nn203440r) / ACS Nano by T Gao (2011)
  38. Zhang, Y. et al. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 5, 4014–4022 (2011). (10.1021/nn200573v) / ACS Nano by Y Zhang (2011)
  39. Wang, B., Caffio, M., Bromley, C., Früchtl, H. & Schaub, R. Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. ACS Nano 4, 5773–5782 (2010). (10.1021/nn101520k) / ACS Nano by B Wang (2010)
  40. Sicot, M. et al. Nucleation and growth of nickel nanoclusters on graphene Moiré on Rh(111). App. Phys. Lett. 96, 093115 (2010). (10.1063/1.3341176) / App. Phys. Lett. by M Sicot (2010)
  41. Sicot, M. et al. Size-selected epitaxial nanoislands underneath graphene moiré on Rh(111). ACS Nano 6, 151–158 (2012). (10.1021/nn203169j) / ACS Nano by M Sicot (2012)
  42. Meng, L. et al. Enhanced intervalley scattering of twisted bilayer graphene by periodic AB stacked atoms. Phys. Rev. B 85, 235453 (2012). (10.1103/PhysRevB.85.235453) / Phys. Rev. B by L Meng (2012)
  43. Kim, K. et al. Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012). (10.1103/PhysRevLett.108.246103) / Phys. Rev. Lett. by K Kim (2012)
  44. Park, C.-H., Yang, L., Son, Y.-W., Cohen, M. L. & Louie, S. G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nat. Phys. 4, 213–217 (2008). (10.1038/nphys890) / Nat. Phys. by C-H Park (2008)
  45. Park, C.-H., Yang, L., Son, Y.-W., Cohen, M. L. & Louie, S. G. New generation of massless Dirac fermions in graphene under external periodic potentials. Phys. Rev. Lett. 101, 126804 (2008). (10.1103/PhysRevLett.101.126804) / Phys. Rev. Lett. by C-H Park (2008)
  46. Killi, M., Wu, S. & Paramekanti, A. Band structures of bilayer graphene superlattices. Phys. Rev. Lett. 107, 086801 (2011). (10.1103/PhysRevLett.107.086801) / Phys. Rev. Lett. by M Killi (2011)
  47. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012). (10.1038/nphys2272) / Nat. Phys. by M Yankowitz (2012)
  48. Yan, H. et al. Superlattice Dirac points and space-dependent Fermi velocity in corrugated graphene monolayer. Phys. Rev. B 87, 075405 (2013). (10.1103/PhysRevB.87.075405) / Phys. Rev. B by H Yan (2013)
  49. Ohta, T. et al. Evidence for interlayer coupling and moire periodic potentials in twisted bilayer graphene. Phys. Rev. Lett. 109, 186807 (2012). (10.1103/PhysRevLett.109.186807) / Phys. Rev. Lett. by T Ohta (2012)
  50. Chu, Z.-D., He, W. Y. & He, L. Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer. Phys. Rev. B 87, 155419 (2013). (10.1103/PhysRevB.87.155419) / Phys. Rev. B by Z-D Chu (2013)
  51. Andrei, E. Y., Li, G. & Du, X. Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Rep. Prog. Phys. 75, 056501 (2012). (10.1088/0034-4885/75/5/056501) / Rep. Prog. Phys. by EY Andrei (2012)
  52. Pereira, V. H., Castro Neto, A. H., Liang, H. Y. & Mahadevan, L. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys. Rev. Lett. 105, 156603 (2010). (10.1103/PhysRevLett.105.156603) / Phys. Rev. Lett. by VH Pereira (2010)
  53. Cerda, E., Mahadevan, L. & Pasini, J. M. The elements of draping. Proc. Natl Acad. Sci. USA 101, 1807 (2004). (10.1073/pnas.0307160101) / Proc. Natl Acad. Sci. USA by E Cerda (2004)
  54. Cerda, E. & Mahadevan, L. Conical surface and crescent singularities in crumpled sheets. Phys. Rev. Lett. 80, 2358 (1998). (10.1103/PhysRevLett.80.2358) / Phys. Rev. Lett. by E Cerda (1998)
  55. Cerda, E. & Mahadevan, L. Confined developable elastic surfaces: cylinders, cones and the elastic. Proc. R. Soc. A 461, 671 (2005). (10.1098/rspa.2004.1371) / Proc. R. Soc. A by E Cerda (2005)
  56. Ghaemi, P., Cayssol, J., Sheng, D. N. & Vishwanath, A. Fractional topological phases and broken time-reversal symmetry in strained graphene. Phys. Rev. Lett. 108, 266801 (2012). (10.1103/PhysRevLett.108.266801) / Phys. Rev. Lett. by P Ghaemi (2012)
  57. Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009). (10.1103/PhysRevB.80.045401) / Phys. Rev. B by VM Pereira (2009)
  58. Isacsson, A., Jonsson, L. M., Kinaret, J. M. & Jonson, M. Electronic superlattices in corrugated graphene. Phys. Rev. B 77, 035423 (2008). (10.1103/PhysRevB.77.035423) / Phys. Rev. B by A Isacsson (2008)
Dates
Type When
Created 12 years, 1 month ago (July 12, 2013, 8:48 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:38 p.m.)
Indexed 1 week, 3 days ago (Aug. 20, 2025, 8:56 a.m.)
Issued 12 years, 1 month ago (July 12, 2013)
Published 12 years, 1 month ago (July 12, 2013)
Published Online 12 years, 1 month ago (July 12, 2013)
Funders 0

None

@article{Yan_2013, title={Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3159}, DOI={10.1038/ncomms3159}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Yan, Wei and He, Wen-Yu and Chu, Zhao-Dong and Liu, Mengxi and Meng, Lan and Dou, Rui-Fen and Zhang, Yanfeng and Liu, Zhongfan and Nie, Jia-Cai and He, Lin}, year={2013}, month=jul }