Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Cao, R., Thapa, R., Kim, H., Xu, X., Gyu Kim, M., Li, Q., Park, N., Liu, M., & Cho, J. (2013). Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nature Communications, 4(1).

Authors 9
  1. Ruiguo Cao (first)
  2. Ranjit Thapa (additional)
  3. Hyejung Kim (additional)
  4. Xiaodong Xu (additional)
  5. Min Gyu Kim (additional)
  6. Qing Li (additional)
  7. Noejung Park (additional)
  8. Meilin Liu (additional)
  9. Jaephil Cho (additional)
References 37 Referenced 690
  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). (10.1038/nature11115) / Nature by MK Debe (2012)
  2. Cao, R., Lee, J.-S., Liu, M. & Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Ener. Mater 2, 816–829 (2012). (10.1002/aenm.201200013) / Adv. Ener. Mater by R Cao (2012)
  3. Sasaki, K. et al. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012). (10.1038/ncomms2124) / Nat. Commun. by K Sasaki (2012)
  4. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007). (10.1126/science.1135941) / Science by VR Stamenkovic (2007)
  5. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009). (10.1038/nchem.367) / Nat. Chem. by J Greeley (2009)
  6. Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater 10, 780–786 (2011). (10.1038/nmat3087) / Nat. Mater by Y Liang (2011)
  7. Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). (10.1126/science.1168049) / Science by K Gong (2009)
  8. Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron and cobalt. Science 332, 443–447 (2011). (10.1126/science.1200832) / Science by G Wu (2011)
  9. Wu, Z.-S. et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 9082–9085 (2012). (10.1021/ja3030565) / J. Am. Chem. Soc. by Z-S Wu (2012)
  10. Li, X., Popov, B. N., Kawahara, T. & Yanagi, H. Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. J. Power. Sources 196, 1717–1722 (2011). (10.1016/j.jpowsour.2010.10.018) / J. Power. Sources by X Li (2011)
  11. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011). (10.1038/nchem.1069) / Nat. Chem. by J Suntivich (2011)
  12. Goubert-Renaudin, S. N. S., Zhu, X. & Wieckowski, A. Synthesis and characterization of carbon-supported transition metal oxide nanoparticles—Cobalt porphyrin as catalysts for electroreduction of oxygen in acids. Electrochem. Commun. 12, 1457–1461 (2010). (10.1016/j.elecom.2010.06.004) / Electrochem. Commun. by SNS Goubert-Renaudin (2010)
  13. Chen, Z., Higgins, D., Yu, A., Zhang, L. & Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Ener. Environ. Sci. 4, 3167–3192 (2011). (10.1039/c0ee00558d) / Ener. Environ. Sci. by Z Chen (2011)
  14. Jaouen, F. et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Ener. Environ. Sci. 4, 114 (2011). (10.1039/C0EE00011F) / Ener. Environ. Sci. by F Jaouen (2011)
  15. Chen, R., Li, H., Chu, D. & Wang, G. Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J. Phys. Chem. C 113, 20689–20697 (2009). (10.1021/jp906408y) / J. Phys. Chem. C by R Chen (2009)
  16. Li, W., Yu, A., Higgins, D. C., Llanos, B. G. & Chen, Z. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 132, 17056–17058 (2010). (10.1021/ja106217u) / J. Am. Chem. Soc. by W Li (2010)
  17. Jasinski, R. A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964). (10.1038/2011212a0) / Nature by R Jasinski (1964)
  18. Bezerra, C. et al. A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937–4951 (2008). (10.1016/j.electacta.2008.02.012) / Electrochim. Acta by C Bezerra (2008)
  19. Gewirth, A. A. & Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg. Chem. 49, 3557–3566 (2010). (10.1021/ic9022486) / Inorg. Chem. by AA Gewirth (2010)
  20. Meier, H., Tschirwitz, U., Zimmerhackl, E., Albrecht, W. & Zeitler, G. Application of radioisotope techniques for the study of phthalocyanine catalyzed electrochemical processes in fuel cells. J. Phys. Chem. 81, 712–718 (1977). (10.1021/j100523a007) / J. Phys. Chem. by H Meier (1977)
  21. Tanaka, A. A., Fierro, C., Scherson, D. & Yaeger, E. B. Electrocatalytic aspects of iron phthalocyanine and its.mu.-oxo derivatives dispersed on high surface area carbon. J. Phys. Chem. 91, 3799–3807 (1987). (10.1021/j100298a016) / J. Phys. Chem. by AA Tanaka (1987)
  22. Gupta, S., Tryk, D., Bae, I., Aldred, W. & Yeager, E. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 19, 19–27 (1989). (10.1007/BF01039385) / J. Appl. Electrochem. by S Gupta (1989)
  23. Kramm, U. I., Herrmann-Geppert, I., Bogdanoff, P. & Fiechter, S. Effect of an ammonia treatment on structure, composition, and oxygen reduction reaction activity of Fe–N–C catalysts. J. Phys. Chem. C 115, 23417–23427 (2011). (10.1021/jp207417y) / J. Phys. Chem. C by UI Kramm (2011)
  24. Li, W., Wu, J., Higgins, D. C., Choi, J.-Y. & Chen, Z. Determination of iron active sites in pyrolyzed iron-based catalysts for the oxygen reduction reaction. ACS Catal. 2761–2768 (2012). (10.1021/cs300579b)
  25. Jaouen, F., Serventi, A. M., Lefèvre, M., Dodelet, J. P. & Bertrand, P. Non-noble electrocatalysts for O2 reduction: how does heat treatment affect their activity and structure? Part II. Structural changes observed by electron microscopy, raman, and mass spectroscopy. J. Phys. Chem. C 111, 5971–5976 (2007). (10.1021/jp068274h) / J. Phys. Chem. C by F Jaouen (2007)
  26. Lefèvre, M., Dodelet, J. P. & Bertrand, P. Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem. B 106, 8705–8713 (2002). (10.1021/jp020267f) / J. Phys. Chem. B by M Lefèvre (2002)
  27. Koslowski, U. I., Abs-Wurmbach, I., Fiechter, S. & Bogdanoff, P. Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of Fe−N4 centers. J. Phys. Chem. C 112, 15356–15366 (2008). (10.1021/jp802456e) / J. Phys. Chem. C by UI Koslowski (2008)
  28. Chang, C. J., Loh, Z.-H., Shi, C., Anson, F. C. & Nocera, D. G. Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins. J. Am. Chem. Soc. 126, 10013–10020 (2004). (10.1021/ja049115j) / J. Am. Chem. Soc. by CJ Chang (2004)
  29. Kadish, K. M. et al. Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin−corrole dyads. J. Am. Chem. Soc. 127, 5625–5631 (2005). (10.1021/ja0501060) / J. Am. Chem. Soc. by KM Kadish (2005)
  30. Collman, J. P. et al. Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J. Am. Chem. Soc. 102, 6027–6036 (1980). (10.1021/ja00539a009) / J. Am. Chem. Soc. by JP Collman (1980)
  31. Rywkin, S., Hosten, C. M., Lombardi, J. R. & Birke, R. L. Surface-enhanced resonance raman scattering and voltammetry study of the electrocatalytic reduction of oxygen by the μ-Oxo dimer of Iron(III) tetra-4-N-methylpyridylporphyrin. Langmuir 18, 5869–5880 (2002). (10.1021/la011334k) / Langmuir by S Rywkin (2002)
  32. Michel, H., Behr, J., Harrenga, A. & Kannt, A. Cytochrome c oxidase: structure and spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 27, 329–356 (1998). (10.1146/annurev.biophys.27.1.329) / Annu. Rev. Biophys. Biomol. Struct. by H Michel (1998)
  33. Bahr, J. L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001). (10.1021/ja010462s) / J. Am. Chem. Soc. by JL Bahr (2001)
  34. Lefèvre, M. & Dodelet, J.-P. Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim. Acta 48, 2749–2760 (2003). (10.1016/S0013-4686(03)00393-1) / Electrochim. Acta by M Lefèvre (2003)
  35. Liang, Y. et al. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134, 3517–3523 (2012). (10.1021/ja210924t) / J. Am. Chem. Soc. by Y Liang (2012)
  36. Jaouen, F. d. r. et al. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl. Mate. Interfaces 1, 1623–1639 (2009). (10.1021/am900219g) / ACS Appl. Mate. Interfaces by Fdr Jaouen (2009)
  37. Shi, Z. & Zhang, J. Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J. Phys. Chem. C 111, 7084–7090 (2007). (10.1021/jp0671749) / J. Phys. Chem. C by Z Shi (2007)
Dates
Type When
Created 12 years, 2 months ago (June 25, 2013, 6:47 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:43 p.m.)
Indexed 29 minutes ago (Aug. 28, 2025, 2:26 a.m.)
Issued 12 years, 2 months ago (June 25, 2013)
Published 12 years, 2 months ago (June 25, 2013)
Published Online 12 years, 2 months ago (June 25, 2013)
Funders 0

None

@article{Cao_2013, title={Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms3076}, DOI={10.1038/ncomms3076}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Cao, Ruiguo and Thapa, Ranjit and Kim, Hyejung and Xu, Xiaodong and Gyu Kim, Min and Li, Qing and Park, Noejung and Liu, Meilin and Cho, Jaephil}, year={2013}, month=jun }