Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Chung, H. T., Won, J. H., & Zelenay, P. (2013). Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nature Communications, 4(1).

Authors 3
  1. Hoon T. Chung (first)
  2. Jong H. Won (additional)
  3. Piotr Zelenay (additional)
References 28 Referenced 768
  1. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium - air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010). (10.1021/jz1005384) / J. Phys. Chem. Lett. by G Girishkumar (2010)
  2. Moussallem, I., Jorissen, J., Kunz, U., Pinnow, S. & Turek, T. Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J. Appl. Electrochem. 38, 1177–1194 (2008). (10.1007/s10800-008-9556-9) / J. Appl. Electrochem. by I Moussallem (2008)
  3. Schmidt, T. J., Stamenkovic, V., Arenz, M., Markovic, N. M. & Ross, P. N. Oxygen electrocatalysis in alkaline electrolyte: Pt(hkl), Au(hkl) and the effect of Pd-modification. Electrochim. Acta 47, 3765–3776 (2002). (10.1016/S0013-4686(02)00347-X) / Electrochim. Acta by TJ Schmidt (2002)
  4. Blizanac, B. B., Ross, P. N. & Markovic, N. M. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring diskAg(hkl) studies. J. Phys. Chem. B 110, 4735–4741 (2006). (10.1021/jp056050d) / J. Phys. Chem. B by BB Blizanac (2006)
  5. Morcos, I. & Yeager, E. Kinetic studies of oxygen-peroxide couple on pyrolytic graphite. Electrochim. Acta 15, 953–975 (1970). (10.1016/0013-4686(70)80037-8) / Electrochim. Acta by I Morcos (1970)
  6. Qu, D. Y. Investigation of oxygen reduction on activated carbon electrodes in alkaline solution. Carbon 45, 1296–1301 (2007). (10.1016/j.carbon.2007.01.013) / Carbon by DY Qu (2007)
  7. Maldonado, S. & Stevenson, K. J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 109, 4707–4716 (2005). (10.1021/jp044442z) / J. Phys. Chem. B by S Maldonado (2005)
  8. Gong, K. P., Du, F., Xia, Z. H., Durstock, M. & Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 323, 760–764 (2009). (10.1126/science.1168049) / Science. by KP Gong (2009)
  9. Sjostrom, H., Stafstrom, S., Boman, M. & Sundgren, J. E. Superhard and elastic carbon nitride thin-films having fullerene-like microstructure. Phys. Rev. Lett. 75, 1336–1339 (1995). (10.1103/PhysRevLett.75.1336) / Phys. Rev. Lett. by H Sjostrom (1995)
  10. Yanguang, L. et al. An oxygen reduction elctrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 7, 394–400 (2012). (10.1038/nnano.2012.72) / Nat. Nanotechnol. by L Yanguang (2012)
  11. Kim, S. O., Lee, D. H., Lee, W. J., Lee, W. J. & Kim, Y. H. Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 106, 175502 (2011). (10.1103/PhysRevLett.106.175502) / Phys. Rev. Lett. by SO Kim (2011)
  12. Shanmugam, S. & Osaka, T. Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules. Chem. Commun. 47, 4463–4465 (2011). (10.1039/c1cc10361j) / Chem. Commun. by S Shanmugam (2011)
  13. Liang, Y. Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). (10.1038/nmat3087) / Nat. Mater. by YY Liang (2011)
  14. Qu, L. T., Liu, Y., Baek, J. B. & Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010). (10.1021/nn901850u) / ACS Nano by LT Qu (2010)
  15. Liu, R. L., Wu, D. Q., Feng, X. L. & Mullen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Engl. 49, 2565–2569 (2010). (10.1002/anie.200907289) / Angew. Chem. Int. Engl. by RL Liu (2010)
  16. Yang, W., Fellinger, T. P. & Antonietti, M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 133, 206–209 (2011). (10.1021/ja108039j) / J. Am. Chem. Soc. by W Yang (2011)
  17. Meng, H., Jaouen, F., Proietti, E., Lefevre, M. & Dodelet, J. P. pH-effect on oxygen reduction activity of Fe-based electro-catalysts. Electrochem. Commun. 11, 1986–1989 (2009). (10.1016/j.elecom.2009.08.035) / Electrochem. Commun. by H Meng (2009)
  18. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007). (10.1126/science.1135941) / Science by VR Stamenkovic (2007)
  19. Zhang, J., Sasaki, K., Sutter, E. & Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007). (10.1126/science.1134569) / Science by J Zhang (2007)
  20. Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater. 9, 904–907 (2010). (10.1038/nmat2878) / Nat. Mater. by J Snyder (2010)
  21. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009). (10.1038/nchem.367) / Nat. Chem. by J Greeley (2009)
  22. Groenewolt, M. & Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 17, 1789–1792 (2005). (10.1002/adma.200401756) / Adv. Mater. by M Groenewolt (2005)
  23. Lota, G., Fic, K. & Frackowiak, E. Carbon nanotubes and their composites in electrochemical applications. Energy Environmen. Sci. 4, 1592–1605 (2011). (10.1039/c0ee00470g) / Energy Environmen. Sci. by G Lota (2011)
  24. Su, D. S. & Schlogl, R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3, 136–168 (2010). (10.1002/cssc.200900182) / ChemSusChem by DS Su (2010)
  25. Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011). (10.1126/science.1200832) / Science by G Wu (2011)
  26. Piana, M., Catanorchi, S. & Gasteiger, H. A. Kinetics of non-platinum group metal catalysts for the oxygen reduction reaction in alkaline medium. ECS Trans. 16, 2045–2055 (2008). (10.1149/1.2982044) / ECS Trans. by M Piana (2008)
  27. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005). (10.1016/j.apcatb.2004.06.021) / Appl. Catal. B by HA Gasteiger (2005)
  28. Lefevre, M., Proietti, E., Jaouen, F. & Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009). (10.1126/science.1170051) / Science by M Lefevre (2009)
Dates
Type When
Created 12 years, 3 months ago (May 28, 2013, 2:08 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 3:46 p.m.)
Indexed 4 days, 15 hours ago (Aug. 27, 2025, 12:34 p.m.)
Issued 12 years, 3 months ago (May 28, 2013)
Published 12 years, 3 months ago (May 28, 2013)
Published Online 12 years, 3 months ago (May 28, 2013)
Funders 0

None

@article{Chung_2013, title={Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2944}, DOI={10.1038/ncomms2944}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Chung, Hoon T. and Won, Jong H. and Zelenay, Piotr}, year={2013}, month=may }