Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Sun, Y., Zhao, L., Pan, H., Lu, X., Gu, L., Hu, Y.-S., Li, H., Armand, M., Ikuhara, Y., Chen, L., & Huang, X. (2013). Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nature Communications, 4(1).

Authors 11
  1. Yang Sun (first)
  2. Liang Zhao (additional)
  3. Huilin Pan (additional)
  4. Xia Lu (additional)
  5. Lin Gu (additional)
  6. Yong-Sheng Hu (additional)
  7. Hong Li (additional)
  8. Michel Armand (additional)
  9. Yuichi Ikuhara (additional)
  10. Liquan Chen (additional)
  11. Xuejie Huang (additional)
References 56 Referenced 642
  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  2. Ellis, B. L., Makahnouk, W. R. M., Makimura, Y., Toghill, K. & Nazar, L. F. A multifunctional 3.5V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6, 749–753 (2007). (10.1038/nmat2007) / Nat. Mater. by BL Ellis (2007)
  3. Tarascon, J. M. Is lithium the new gold? Nat. Chem. 2, 510–510 (2010). (10.1038/nchem.680) / Nat. Chem. by JM Tarascon (2010)
  4. Lu, Y., Wang, L., Cheng, J. & Goodenough, J. B. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012). (10.1039/c2cc31777j) / Chem. Commun. by Y Lu (2012)
  5. Chevrier, V. L. & Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011). (10.1149/1.3607983) / J. Electrochem. Soc. by VL Chevrier (2011)
  6. Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011). (10.1039/c1ee01782a) / Energy Environ. Sci. by SP Ong (2011)
  7. Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012). (10.1038/ncomms1843) / Nat. Commun. by A Hayashi (2012)
  8. Delmas, C., Braconnier, J. J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 3-4, 165–169 (1981). (10.1016/0167-2738(81)90076-X) / Solid State Ionics by C Delmas (1981)
  9. Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011). (10.1038/nmat2920) / Nat. Mater. by R Berthelot (2011)
  10. Komaba, S., Takei, C., Nakayama, T., Ogata, A. & Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 versus LiCrO2. Electrochem. Commun. 12, 355–358 (2010). (10.1016/j.elecom.2009.12.033) / Electrochem. Commun. by S Komaba (2010)
  11. Ding, J.-J., Zhou, Y.-N., Sun, Q. & Fu, Z.-W. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem. Commun. 22, 85–88 (2012). (10.1016/j.elecom.2012.06.001) / Electrochem. Commun. by J-J Ding (2012)
  12. Cao, Y. L. et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 23, 3155–3160 (2011). (10.1002/adma.201100904) / Adv. Mater. by YL Cao (2011)
  13. Komaba, S. et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011). (10.1002/adfm.201100854) / Adv. Funct. Mater. by S Komaba (2011)
  14. Kim, D. et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 18, 66–69 (2012). (10.1016/j.elecom.2012.02.020) / Electrochem. Commun. by D Kim (2012)
  15. Carlier, D. et al. The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton. T. 40, 9306–9312 (2011). (10.1039/c1dt10798d) / Dalton. T. by D Carlier (2011)
  16. Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012). (10.1038/nmat3309) / Nat. Mater. by N Yabuuchi (2012)
  17. Kim, D. et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 1, 333–336 (2011). (10.1002/aenm.201000061) / Adv. Energy Mater. by D Kim (2011)
  18. Jian, Z. L. et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012). (10.1016/j.elecom.2011.11.009) / Electrochem. Commun. by ZL Jian (2012)
  19. Jian, Z. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2012). (10.1002/aenm.201200558) / Adv. Energy Mater. by Z Jian (2012)
  20. Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013). (10.1002/adfm.201200691) / Adv. Funct. Mater. by MD Slater (2013)
  21. Jow, T. R., Shacklette, L. W., Maxfield, M. & Vernick, D. The role of conductive polymers in alkali-metal secondary electrodes. J. Electrochem. Soc. 134, 1730–1733 (1987). (10.1149/1.2100746) / J. Electrochem. Soc. by TR Jow (1987)
  22. Alcántara, R., Jaraba, M., Lavela, P. & Tirado, J. L. NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847–2848 (2002). (10.1021/cm025556v) / Chem. Mater. by R Alcántara (2002)
  23. Stevens, D. A. & Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271–1273 (2000). (10.1149/1.1393348) / J. Electrochem. Soc. by DA Stevens (2000)
  24. Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J. M. & Palacin, M. R. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011). (10.1021/cm202076g) / Chem. Mater. by P Senguttuvan (2011)
  25. Sun, Q., Ren, Q. Q., Li, H. & Fu, Z. W. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem. Commun. 13, 1462–1464 (2011). (10.1016/j.elecom.2011.09.020) / Electrochem. Commun. by Q Sun (2011)
  26. Xiong, H., Slater, M. D., Balasubramanian, M., Johnson, C. S. & Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565 (2011). (10.1021/jz2012066) / J. Phys. Chem. Lett. by H Xiong (2011)
  27. Zhao, L. et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2, 962–965 (2012). (10.1002/aenm.201200166) / Adv. Energy Mater. by L Zhao (2012)
  28. Xiao, L. F. et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 48, 3321–3323 (2012). (10.1039/c2cc17129e) / Chem. Commun. by LF Xiao (2012)
  29. Qian, J. et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48, 7070–7072 (2012). (10.1039/c2cc32730a) / Chem. Commun. by J Qian (2012)
  30. Ferg, E., Gummow, R. J., Dekock, A. & Thackeray, M. M. Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 141, L147–L150 (1994). (10.1149/1.2059324) / J. Electrochem. Soc. by E Ferg (1994)
  31. Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of Li [Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995). (10.1149/1.2048592) / J. Electrochem. Soc. by T Ohzuku (1995)
  32. Zhao, L., Pan, H. L., Hu, Y. S., Li, H. & Chen, L. Q. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin. Phys. B 21, 028201 (2012). (10.1088/1674-1056/21/2/028201) / Chin. Phys. B by L Zhao (2012)
  33. Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 333, 75–79 (2011). (10.1126/science.1209150) / Science by I Kovalenko (2011)
  34. Drofenik, J. et al. Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochim. Acta 48, 883–889 (2003). (10.1016/S0013-4686(02)00784-3) / Electrochim. Acta by J Drofenik (2003)
  35. Wilkening, M. et al. Microscopic Li self-diffusion parameters in the lithiated anode material Li4+xTi5O12 (0 <= x <= 3) measured by 7Li solid state NMR. Phys. Chem. Chem. Phys. 9, 6199–6202 (2007). (10.1039/b713311a) / Phys. Chem. Chem. Phys. by M Wilkening (2007)
  36. Wagemaker, M., van Eck, E. R. H., Kentgens, A. P. M. & Mulder, F. M. Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J. Phys. Chem. B 113, 224–230 (2009). (10.1021/jp8073706) / J. Phys. Chem. B by M Wagemaker (2009)
  37. Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010). (10.1021/cm902696j) / Chem. Mater. by BL Ellis (2010)
  38. Chang, H. H. et al. Study on dynamics of structural transformation during charge/discharge of LiFePO4 cathode. Electrochem. Commun. 10, 335–339 (2008). (10.1016/j.elecom.2007.12.024) / Electrochem. Commun. by HH Chang (2008)
  39. Wang, X. J. et al. Investigation of the structural changes in Li1-xFePO4 upon charging by synchrotron radiation techniques. J. Mater. Chem. 21, 11406–11411 (2011). (10.1039/c1jm11036e) / J. Mater. Chem. by XJ Wang (2011)
  40. Wagemaker, M. et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Adv. Mater. 18, 3169–3173 (2006). (10.1002/adma.200601636) / Adv. Mater. by M Wagemaker (2006)
  41. Yamada, A. et al. Room-temperature miscibility gap in LixFePO4. Nat. Mater. 5, 357–360 (2006). (10.1038/nmat1634) / Nat. Mater. by A Yamada (2006)
  42. Pennycook, S. J. & Jesson, D. E. High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990). (10.1103/PhysRevLett.64.938) / Phys. Rev. Lett. by SJ Pennycook (1990)
  43. Huang, R. & Ikuhara, Y. STEM characterization for lithium-ion battery cathode materials. Curr. Opin. Solid State Mater. Sci. 16, 31–38 (2012). (10.1016/j.cossms.2011.08.002) / Curr. Opin. Solid State Mater. Sci. by R Huang (2012)
  44. Findlay, S. D. et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (2009). (10.1063/1.3265946) / Appl. Phys. Lett. by SD Findlay (2009)
  45. Suo, L. et al. Highly ordered staging structural interface between LiFePO4 and FePO4. Phys. Chem. Chem. Phys. 14, 5363–5367 (2012). (10.1039/c2cp40610a) / Phys. Chem. Chem. Phys. by L Suo (2012)
  46. Lu, X. et al. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv. Mater. 24, 3233–3238 (2012). (10.1002/adma.201200450) / Adv. Mater. by X Lu (2012)
  47. Hooper, A. A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis. J. Phys. D-Appl. Phys. 10, 1487–1496 (1977). (10.1088/0022-3727/10/11/013) / J. Phys. D-Appl. Phys. by A Hooper (1977)
  48. Bohnke, O., Ronchetti, S. & Mazza, D. Conductivity measurements on nasicon and nasicon-modified materials. Solid State Ionics 122, 127–136 (1999). (10.1016/S0167-2738(99)00062-4) / Solid State Ionics by O Bohnke (1999)
  49. Zhao, L., Hu, Y. S., Li, H., Wang, Z. X. & Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-Ion batteries. Adv. Mater. 23, 1385–1388 (2011). (10.1002/adma.201003294) / Adv. Mater. by L Zhao (2011)
  50. Rodriguezcarvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993). (10.1016/0921-4526(93)90108-I) / Physica B by J Rodriguezcarvajal (1993)
  51. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  52. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comp. Mater. Sci. by G Kresse (1996)
  53. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blochl (1994)
  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  55. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). (10.1063/1.1329672) / J. Chem. Phys. by G Henkelman (2000)
  56. Ishizuka, K. A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71–83 (2002). (10.1016/S0304-3991(01)00145-0) / Ultramicroscopy by K Ishizuka (2002)
Dates
Type When
Created 12 years, 3 months ago (May 21, 2013, 5:07 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:51 p.m.)
Indexed 2 weeks, 3 days ago (Aug. 5, 2025, 8:41 a.m.)
Issued 12 years, 3 months ago (May 21, 2013)
Published 12 years, 3 months ago (May 21, 2013)
Published Online 12 years, 3 months ago (May 21, 2013)
Funders 0

None

@article{Sun_2013, title={Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2878}, DOI={10.1038/ncomms2878}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Sun, Yang and Zhao, Liang and Pan, Huilin and Lu, Xia and Gu, Lin and Hu, Yong-Sheng and Li, Hong and Armand, Michel and Ikuhara, Yuichi and Chen, Liquan and Huang, Xuejie}, year={2013}, month=may }