Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Sluka, T., Tagantsev, A. K., Bednyakov, P., & Setter, N. (2013). Free-electron gas at charged domain walls in insulating BaTiO3. Nature Communications, 4(1).

Authors 4
  1. Tomas Sluka (first)
  2. Alexander K. Tagantsev (additional)
  3. Petr Bednyakov (additional)
  4. Nava Setter (additional)
References 34 Referenced 398
  1. Mathur, N. D. et al. Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries. Nature 387, 266–268 (1997). (10.1038/387266a0) / Nature by ND Mathur (1997)
  2. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 378–380 (2004). (10.1038/nature02308) / Nature by A Ohtomo (2004)
  3. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006). (10.1126/science.1131091) / Science by S Thiel (2006)
  4. Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nat. Phys. 2, 244–248 (2006). (10.1038/nphys272) / Nat. Phys. by J Chakhalian (2006)
  5. Tsukazaki, A. et al. Quantum hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007). (10.1126/science.1137430) / Science by A Tsukazaki (2007)
  6. Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008). (10.1038/nature07293) / Nature by A Gozar (2008)
  7. Mannhart, J. & Schlom, D. G. Oxide interfaces-an opportunity for electronics. Science 327, 1607–1611 (2010). (10.1126/science.1181862) / Science by J Mannhart (2010)
  8. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006). (10.1103/PhysRevLett.96.067601) / Phys. Rev. Lett. by M Mostovoy (2006)
  9. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). (10.1038/nmat2023) / Nat. Mater. by R Waser (2007)
  10. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009). (10.1038/nmat2373) / Nat. Mater. by J Seidel (2009)
  11. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010). (10.1038/nnano.2009.451) / Nat. Nanotechnol. by SY Yang (2010)
  12. Seidel, J. et al. Domain wall conductivity in La-doped BiFeO3 . Phys. Rev. Lett. 105, 197603 (2010). (10.1103/PhysRevLett.105.197603) / Phys. Rev. Lett. by J Seidel (2010)
  13. Farokhipoor, S. & Noheda, B. Conduction through 71 degrees domainwalls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011). (10.1103/PhysRevLett.107.127601) / Phys. Rev. Lett. by S Farokhipoor (2011)
  14. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377 (2011). (10.1002/adma.201102254) / Adv. Mater. by J Guyonnet (2011)
  15. Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano. Lett. 12, 209–213 (2012). (10.1021/nl203349b) / Nano. Lett. by P Maksymovych (2012)
  16. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012). (10.1038/nmat3249) / Nat. Mater. by D Meier (2012)
  17. Schroeder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012). (10.1002/adfm.201201174) / Adv. Funct. Mater. by M Schroeder (2012)
  18. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). (10.1103/RevModPhys.84.119) / Rev. Mod. Phys. by G Catalan (2012)
  19. Vul, B. M., Guro, G. M. & Ivanchik, I. Encountering domains in ferroelectrics. Ferroelectrics 6, 29–31 (1973). (10.1080/00150197308237691) / Ferroelectrics by BM Vul (1973)
  20. Gureev, M. Y., Tagantsev, A. K. & Setter, N. Head-to-head and tail-to-tail 180 degrees domain walls in an isolated ferroelectric. Phys. Rev. B 83, 184104 (2011). (10.1103/PhysRevB.83.184104) / Phys. Rev. B by MY Gureev (2011)
  21. Sluka, T., Tagantsev, A. K., Damjanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Commun. 3, 748 (2012). (10.1038/ncomms1751) / Nat. Commun. by T Sluka (2012)
  22. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011). (10.1103/PhysRevB.83.235313) / Phys. Rev. B by EA Eliseev (2011)
  23. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3 . Nat. Mater. 9, 253–258 (2010). (10.1038/nmat2632) / Nat. Mater. by T Choi (2010)
  24. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Uspekhi Fizicheskikh Nauk 112, 561–589 (1974). (10.3367/UFNr.0112.197404a.0561) / Uspekhi Fizicheskikh Nauk by AP Levanyuk (1974)
  25. Levanyuk, A. P. & Sannikov, D. G. Anomalies in dielectric properties in phase transitions. Soviet Physics Jetp-Ussr 28, 134 (1969). / Soviet Physics Jetp-Ussr by AP Levanyuk (1969)
  26. Kugel, V. D. & Rosenman, G. Domain inversion in heat-treated LiNbO3 crystals. Appl. Phys. Lett. 62, 2902–2904 (1993). (10.1063/1.109191) / Appl. Phys. Lett. by VD Kugel (1993)
  27. Chiu, Y. P. et al. Atomic-scale evolution of local electronic structure across multiferroic domain walls. Adv. Mater. 23, 1530–1534 (2011). (10.1002/adma.201004143) / Adv. Mater. by YP Chiu (2011)
  28. Kokhanchik, L. S. The use of surface charging in the sem for lithium niobate domain structure investigation. Micron 40, 41–45 (2009). (10.1016/j.micron.2008.02.009) / Micron by LS Kokhanchik (2009)
  29. Wada, S. et al. Domain wall engineering in lead-free piezoelectric crystals. Ferroelectrics 355, 37–49 (2007). (10.1080/00150190701515881) / Ferroelectrics by S Wada (2007)
  30. Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008). (10.1038/nmat2080) / Nat. Mater. by CL Jia (2008)
  31. Qi, Y. et al. Coexistence of ferroelectric vortex domains and charged domain walls in epitaxial BiFeO3 film on (110)(o) GdScO3 substrate. J. Appl. Phys. 111, 104117 (2012). (10.1063/1.4722253) / J. Appl. Phys. by Y Qi (2012)
  32. Sze, S. & Ng, K. Physics of Semiconductor Devices John Wiley & Sons (2006). (10.1002/0470068329)
  33. Xiao, Y., Shenoy, V. B. & Bhattacharya, K. Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys. Rev. Lett. 95, 247603 (2005). (10.1103/PhysRevLett.95.247603) / Phys. Rev. Lett. by Y Xiao (2005)
  34. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008). (10.1038/nature07576) / Nature by AD Caviglia (2008)
Dates
Type When
Created 12 years, 3 months ago (May 7, 2013, 6:05 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:53 p.m.)
Indexed 21 hours, 45 minutes ago (Aug. 21, 2025, 1:15 p.m.)
Issued 12 years, 3 months ago (May 7, 2013)
Published 12 years, 3 months ago (May 7, 2013)
Published Online 12 years, 3 months ago (May 7, 2013)
Funders 0

None

@article{Sluka_2013, title={Free-electron gas at charged domain walls in insulating BaTiO3}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2839}, DOI={10.1038/ncomms2839}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Sluka, Tomas and Tagantsev, Alexander K. and Bednyakov, Petr and Setter, Nava}, year={2013}, month=may }