Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Bae, M.-H., Li, Z., Aksamija, Z., Martin, P. N., Xiong, F., Ong, Z.-Y., Knezevic, I., & Pop, E. (2013). Ballistic to diffusive crossover of heat flow in graphene ribbons. Nature Communications, 4(1).

Authors 8
  1. Myung-Ho Bae (first)
  2. Zuanyi Li (additional)
  3. Zlatan Aksamija (additional)
  4. Pierre N Martin (additional)
  5. Feng Xiong (additional)
  6. Zhun-Yong Ong (additional)
  7. Irena Knezevic (additional)
  8. Eric Pop (additional)
References 43 Referenced 286
  1. Pop, E., Varshney, V. & Roy, A. K. Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012) . (10.1557/mrs.2012.203) / MRS Bull. by E Pop (2012)
  2. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011) . (10.1038/nmat3064) / Nat. Mater. by AA Balandin (2011)
  3. Dorgan, V. E., Behnam, A., Conley, H. J., Bolotin, K. I. & Pop, E. High-field electrical and thermal transport in suspended graphene. Nano Lett doi: 10.1021/nl400197w (2013) . (10.1021/nl400197w)
  4. Koh, Y. K., Bae, M.-H., Cahill, D. G. & Pop, E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010) . (10.1021/nl101790k) / Nano Lett. by YK Koh (2010)
  5. Jang, W. Y., Chen, Z., Bao, W. Z., Lau, C. N. & Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10, 3909–3913 (2010) . (10.1021/nl101613u) / Nano Lett. by WY Jang (2010)
  6. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010) . (10.1126/science.1184014) / Science by JH Seol (2010)
  7. Ong, Z.-Y. & Pop, E. Effect of substrate modes on thermal transport in supported graphene. Phys. Rev. B 84, 075471 (2011) . (10.1103/PhysRevB.84.075471) / Phys. Rev. B by Z-Y Ong (2011)
  8. Qiu, B. & Ruan, X. Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 100, 193101 (2012) . (10.1063/1.4712041) / Appl. Phys. Lett. by B Qiu (2012)
  9. Miao, F. et al. Phase-coherent transport in graphene quantum billiards. Science 317, 1530–1533 (2007) . (10.1126/science.1144359) / Science by F Miao (2007)
  10. Huang, B., Yan, Q., Li, Z. & Duan, W. Towards graphene nanoribbon-based electronics. Front. Phys. China 4, 269–279 (2009) . (10.1007/s11467-009-0029-3) / Front. Phys. China by B Huang (2009)
  11. Yang, Y. & Murali, R. Impact of size effect on graphene nanoribbon transport. IEEE Elec. Dev. Lett. 31, 237–239 (2010) . (10.1109/LED.2009.2039915) / IEEE Elec. Dev. Lett. by Y Yang (2010)
  12. Wang, X. et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nat. Nanotech. 6, 563–567 (2011) . (10.1038/nnano.2011.138) / Nat. Nanotech. by X Wang (2011)
  13. Liao, A. D. et al. Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 106, 256801 (2011) . (10.1103/PhysRevLett.106.256801) / Phys. Rev. Lett. by AD Liao (2011)
  14. Behnam, A. et al. Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition. Nano Lett. 12, 4424–4430 (2012) . (10.1021/nl300584r) / Nano Lett. by A Behnam (2012)
  15. Tighe, T. S., Worlock, J. M. & Roukes, M. L. Direct thermal conductance measurements on suspended monocrystalline nanostructures. Appl. Phys. Lett. 70, 2687–2689 (1997) . (10.1063/1.118994) / Appl. Phys. Lett. by TS Tighe (1997)
  16. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000) . (10.1038/35010065) / Nature by K Schwab (2000)
  17. Chen, R. et al. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008) . (10.1103/PhysRevLett.101.105501) / Phys. Rev. Lett. by R Chen (2008)
  18. Lim, J., Hippalgaonkar, K., Andrews, S. C., Majumdar, A. & Yang, P. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett. 12, 2475–2482 (2012) . (10.1021/nl3005868) / Nano Lett. by J Lim (2012)
  19. Serov, A. Y., Ong, Z.-Y. & Pop, E. Effect of grain boundaries on thermal transport in graphene. Appl. Phys. Lett. 102, 033104 (2013) . (10.1063/1.4776667) / Appl. Phys. Lett. by AY Serov (2013)
  20. Stojanovic, N., Berg, J. M., Maithripala, D. H. S. & Holtz, M. Direct measurement of thermal conductivity of aluminum nanowires. Appl. Phys. Lett. 95, 091905 (2009) . (10.1063/1.3216035) / Appl. Phys. Lett. by N Stojanovic (2009)
  21. Ryu, S., Maultzsch, J., Han, M. Y., Kim, P. & Brus, L. E. Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano. 5, 4123–4130 (2011) . (10.1021/nn200799y) / ACS Nano. by S Ryu (2011)
  22. Mingo, N. & Broido, D. A. Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95, 096105 (2005) . (10.1103/PhysRevLett.95.096105) / Phys. Rev. Lett. by N Mingo (2005)
  23. Saito, K., Nakamura, J. & Natori, A. Ballistic thermal conductance of a graphene sheet. Phys. Rev. B 76, 115409 (2007) . (10.1103/PhysRevB.76.115409) / Phys. Rev. B by K Saito (2007)
  24. Muñoz, E., Lu, J. & Yakobson, B. I. Ballistic thermal conductance of graphene ribbons. Nano Lett. 10, 1652–1656 (2010) . (10.1021/nl904206d) / Nano Lett. by E Muñoz (2010)
  25. Prasher, R. Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 77, 075424 (2008) . (10.1103/PhysRevB.77.075424) / Phys. Rev. B by R Prasher (2008)
  26. Shur, M. S. Low ballistic mobility in submicron HEMTs. IEEE Elec. Dev. Lett. 23, 511–513 (2002) . (10.1109/LED.2002.802679) / IEEE Elec. Dev. Lett. by MS Shur (2002)
  27. Wang, J. & Lundstrom, M. Ballistic transport in high electron mobility transistors. IEEE Trans. Electron Devices 50, 1604–1609 (2003) . (10.1109/TED.2003.814980) / IEEE Trans. Electron Devices by J Wang (2003)
  28. Jeong, C., Datta, S. & Lundstrom, M. Full dispersion versus Debye model evaluation of lattice thermal conductivity with a Landauer approach. J. Appl. Phys. 109, 073718 (2011) . (10.1063/1.3567111) / J. Appl. Phys. by C Jeong (2011)
  29. Jeong, C., Kim, R., Luisier, M., Datta, S. & Lundstrom, M. On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107, 023707 (2010) . (10.1063/1.3291120) / J. Appl. Phys. by C Jeong (2010)
  30. Haskins, J. et al. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano. 5, 3779–3787 (2011) . (10.1021/nn200114p) / ACS Nano. by J Haskins (2011)
  31. Aksamija, Z. & Knezevic, I. Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011) . (10.1063/1.3569721) / Appl. Phys. Lett. by Z Aksamija (2011)
  32. Martin, P. N., Aksamija, Z., Pop, E. & Ravaioli, U. Reduced thermal conductivity in nanoengineered rough ge and gaas nanowires. Nano Lett. 10, 1120–1124 (2010) . (10.1021/nl902720v) / Nano Lett. by PN Martin (2010)
  33. Sadhu, J. & Sinha, S. Room-temperature phonon boundary scattering below the Casimir limit. Phys. Rev. B 84, 115450 (2011) . (10.1103/PhysRevB.84.115450) / Phys. Rev. B by J Sadhu (2011)
  34. Goharrizi, A. Y., Pourfath, M., Fathipour, M., Kosina, H. & Selberherr, S. An analytical model for line-edge roughness limited mobility of graphene nanoribbons. IEEE Trans. Electron Devices 58, 3725–3735 (2011) . (10.1109/TED.2011.2163719) / IEEE Trans. Electron Devices by AY Goharrizi (2011)
  35. Xie, L. et al. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, raman spectroscopy, and electrical properties. J. Am. Chem. Soc. 133, 10394–10397 (2011) . (10.1021/ja203860a) / J. Am. Chem. Soc. by L Xie (2011)
  36. Grosse, K. L., Bae, M.-H., Lian, F., Pop, E. & King, W. P. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotech. 6, 287–290 (2011) . (10.1038/nnano.2011.39) / Nat. Nanotech. by KL Grosse (2011)
  37. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010) . (10.1038/nmat2568) / Nat. Mater. by ME Siemens (2010)
  38. Ni, Z. H. et al. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano. 2, 1033–1039 (2008) . (10.1021/nn800031m) / ACS Nano. by ZH Ni (2008)
  39. Aksamija, Z. & Knezevic, I. Thermal transport in graphene nanoribbons supported on SiO2 . Phys. Rev. B 86, 165426 (2012) . (10.1103/PhysRevB.86.165426) / Phys. Rev. B by Z Aksamija (2012)
  40. Nika, D. L., Pokatilov, E. P., Askerov, A. S. & Balandin, A. A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009) . (10.1103/PhysRevB.79.155413) / Phys. Rev. B by DL Nika (2009)
  41. Wang, Y., Qiu, B. & Ruan, X. Edge effect on thermal transport in graphene nanoribbons: a phonon localization mechanism beyond edge roughness scattering. Appl. Phys. Lett. 101, 013101 (2012) . (10.1063/1.4732155) / Appl. Phys. Lett. by Y Wang (2012)
  42. Bae, M.-H., Islam, S., Dorgan, V. E. & Pop, E. Scaling of high-field transport and localized heating in graphene transistors. ACS Nano. 5, 7936–7944 (2011) . (10.1021/nn202239y) / ACS Nano. by M-H Bae (2011)
  43. Hsieh, W.-P., Lyons, A. S., Pop, E., Keblinski, P. & Cahill, D. G. Pressure tuning of the thermal conductance of weak interfaces. Phys. Rev. B 84, 184107 (2011) . (10.1103/PhysRevB.84.184107) / Phys. Rev. B by W-P Hsieh (2011)
Dates
Type When
Created 12 years, 4 months ago (April 16, 2013, 7:07 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:59 p.m.)
Indexed 2 weeks, 6 days ago (Aug. 2, 2025, 12:29 a.m.)
Issued 12 years, 4 months ago (April 16, 2013)
Published 12 years, 4 months ago (April 16, 2013)
Published Online 12 years, 4 months ago (April 16, 2013)
Funders 0

None

@article{Bae_2013, title={Ballistic to diffusive crossover of heat flow in graphene ribbons}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2755}, DOI={10.1038/ncomms2755}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Bae, Myung-Ho and Li, Zuanyi and Aksamija, Zlatan and Martin, Pierre N and Xiong, Feng and Ong, Zhun-Yong and Knezevic, Irena and Pop, Eric}, year={2013}, month=apr }