Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
46
Referenced
266
-
Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).
(
10.1021/cr00035a013
) / Chem. Rev. by AL Linsebigler (1995) -
Bak, T., Nowotny, J., Rekas, M. & Sorrell, C. C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991–1022 (2002).
(
10.1016/S0360-3199(02)00022-8
) / Int. J. Hydrogen Energy by T Bak (2002) -
Nowotny, J., Sorrell, C. C., Bak, T. & Sheppard, L. R. Solar-hydrogen: Unresolved problems in solid-state science. Solar Energy 78, 593–602 (2005).
(
10.1016/j.solener.2005.01.008
) / Solar Energy by J Nowotny (2005) -
Ni, M., Leung, M. K. H., Leung, D. Y. C. & Sumathy, K. A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renewable and Sustainable Energy Rev. 11, 401–425 (2007).
(
10.1016/j.rser.2005.01.009
) / Renewable and Sustainable Energy Rev. by M Ni (2007) -
Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
(
10.1038/238037a0
) / Nature by A Fujishima (1972) -
Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).
(
10.1021/cr00033a004
) / Chem. Rev. by MR Hoffmann (1995) -
Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).
(
10.1021/cr0500535
) / Chem. Rev. by X Chen (2007) -
Chen, Z. et al. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010).
(
10.1557/JMR.2010.0020
) / J. Mater. Res. by Z Chen (2010) -
Murphy, A. B. et al. Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999–2017 (2006).
(
10.1016/j.ijhydene.2006.01.014
) / Int. J. Hydrogen Energy by AB Murphy (2006) -
Choi, W., Termin, A. & Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994).
(
10.1021/j100102a038
) / J. Phys. Chem. by W Choi (1994) -
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001).
(
10.1126/science.1061051
) / Science by R Asahi (2001) -
Park, J. H., Kim, S. & Bard, A. J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24–28 (2005).
(
10.1021/nl051807y
) / Nano Lett. by JH Park (2005) -
Khan, S. U. M., Al-Shahry, M. & Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 . Science 297, 2243–2245 (2002).
(
10.1126/science.1075035
) / Science by SUM Khan (2002) - Hashimoto, K., Irie, H. & Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Japn. J. Appl. Phys. Part 1 Regular Papers Brief Commun. Rev. Papers 44, 8269–8285 (2005). / Japn. J. Appl. Phys. Part 1 Regular Papers Brief Commun. Rev. Papers by K Hashimoto (2005)
-
Yin, W.-J. et al. Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO2 . Phys. Rev. B 82, 045106 (2010).
(
10.1103/PhysRevB.82.045106
) / Phys. Rev. B by W-J Yin (2010) -
Gai, Y., Li, J., Li, S.-S., Xia, J.-B. & Wei, S.-H. Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett. 102, 036402 (2009).
(
10.1103/PhysRevLett.102.036402
) / Phys. Rev. Lett. by Y Gai (2009) -
Wang, P. et al. Optimizing photoelectrochemical properties of TiO2 by chemical codoping. Phy. Rev. B 82, 193103 (2010).
(
10.1103/PhysRevB.82.193103
) / Phy. Rev. B by P Wang (2010) -
Ma, X. et al. Effect of compensated codoping on the photoelectrochemical properties of anatase TiO2 photocatalyst. J. Phys. Chem. C 115, 16963–16969 (2011).
(
10.1021/jp202750w
) / J. Phys. Chem. C by X Ma (2011) -
Wang, D., Zou, Y., Wen, S. & Fan, D. A passivated codoping approach to tailor the band edges of TiO2 for efficient photocatalytic degradation of organic pollutants. Appl. Phys. Lett. 95, 012106–012106-3 (2009).
(
10.1063/1.3174917
) / Appl. Phys. Lett. by D Wang (2009) -
Long, R. & English, N. J. First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania. Appl. Phys. Lett. 94, 132102–132103 (2009).
(
10.1063/1.3114608
) / Appl. Phys. Lett. by R Long (2009) -
Niu, M., Xu, W., Shao, X. & Cheng, D. Enhanced photoelectrochemical performance of rutile TiO2 by Sb-N donor-acceptor coincorporation from first principles calculations. Appl. Phys. Lett. 99, 203111–203113 (2011).
(
10.1063/1.3662968
) / Appl. Phys. Lett. by M Niu (2011) -
Zhu, W. et al. Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys. Rev. Lett. 103, 226401 (2009).
(
10.1103/PhysRevLett.103.226401
) / Phys. Rev. Lett. by W Zhu (2009) -
Breault, T. M. & Bartlett, B. M. Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue dye. J. Phys. Chem. C 116, 5986–5994 (2012).
(
10.1021/jp2078456
) / J. Phys. Chem. C by TM Breault (2012) -
Wang, E., He, T., Zhao, L., Chen, Y. & Cao, Y. Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J. Mater. Chem. 21, 144–150 (2011).
(
10.1039/C0JM02539A
) / J. Mater. Chem. by E Wang (2011) -
Liu, H. et al. (Mo+N) codoped TiO2 for enhanced visible-light photoactivity. Appl. Surf. Sci. 257, 9355–9361 (2011).
(
10.1016/j.apsusc.2011.05.085
) / Appl. Surf. Sci. by H Liu (2011) -
Kubacka, A., Bachiller-Baeza, B.n., Coloó;n, G. & Fernaóndez-Garció, M. W,N-codoped tio2-anatase: a sunlight-operated catalyst for efficient and selective aromatic hydrocarbons photo-oxidation. J. Phys. Chem. C 113, 8553–8555 (2009).
(
10.1021/jp902618g
) / J. Phys. Chem. C by A Kubacka (2009) -
Obata, K., Irie, H. & Hashimoto, K. Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light. Chem. Phys. 339, 124–132 (2007).
(
10.1016/j.chemphys.2007.07.044
) / Chem. Phys. by K Obata (2007) -
Joseph, M., Tabata, H., Saeki, H., Ueda, K. & Kawai, T. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B 302, 140–148 (2001).
(
10.1016/S0921-4526(01)00419-7
) / Physica B by M Joseph (2001) -
Ahn, K.-S. et al. Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Appl. Phys. Lett. 91, 231909–231909-3 (2007).
(
10.1063/1.2822440
) / Appl. Phys. Lett. by K-S Ahn (2007) -
Ban, C. et al. A novel codoping approach for enhancing the performance of LiFePO4 cathodes. Adv. Energy Mater. 2, 1028–1032 (2012).
(
10.1002/aenm.201200085
) / Adv. Energy Mater. by C Ban (2012) -
Neville, E. M. et al. Carbon-doped TiO2 and carbon, tungsten-codoped tio2 through sol–gel processes in the presence of melamine borate: reflections through photocatalysis. J. Phys. Chem. C 116, 16511–16521 (2012).
(
10.1021/jp303645p
) / J. Phys. Chem. C by EM Neville (2012) -
Zhou, X., Peng, F., Wang, H. & Yu, H. Boron and nitrogen-codoped TiO2 nanorods: synthesis, characterization, and photoelectrochemical properties. J. Solid State Chem. 184, 3002–3007 (2011).
(
10.1016/j.jssc.2011.09.017
) / J. Solid State Chem. by X Zhou (2011) -
Thind, S. S., Wu, G. & Chen, A. Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Appl. Catalysis B: Environ. 111–112, 38–45 (2012).
(
10.1016/j.apcatb.2011.09.016
) / Appl. Catalysis B: Environ. by SS Thind (2012) -
Cho, I. S. et al. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011).
(
10.1021/nl2029392
) / Nano Lett. by IS Cho (2011) -
Hwang, Y. J., Hahn, C., Liu, B. & Yang, P. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6, 5060–5069 (2012).
(
10.1021/nn300679d
) / ACS Nano by YJ Hwang (2012) -
Dotan, H., Sivula, K., Gratzel, M., Rothschild, A. & Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011).
(
10.1039/C0EE00570C
) / Energy Environ. Sci. by H Dotan (2011) -
Di Valentin, C. et al. Adsorption of Water on reconstructed rutile TiO2(011)-(2 × 1): TiO double bonds and surface reactivity. J. Am. Chem. Soc. 127, 9895–9903 (2005).
(
10.1021/ja0511624
) / J. Am. Chem. Soc. by C Di Valentin (2005) -
Wilson, J. N. & Idriss, H. Effect of surface reconstruction of TiO2(001) single crystal on the photoreaction of acetic acid. J. Catalysis 214, 46–52 (2003).
(
10.1016/S0021-9517(02)00172-0
) / J. Catalysis by JN Wilson (2003) -
García-Mota, M. et al. Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem 3, 1607–1611 (2011).
(
10.1002/cctc.201100160
) / ChemCatChem by M García-Mota (2011) -
Saison, T. et al. Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 115, 5657–5666 (2011).
(
10.1021/jp109134z
) / J. Phys. Chem. C by T Saison (2011) -
Gomathi Devi, L., Narasimha Murthy, B. & Girish Kumar, S. Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light: Correlation of dye structure and its adsorptive tendency on the degradation rate. Chemosphere 76, 1163–1166 (2009).
(
10.1016/j.chemosphere.2009.04.005
) / Chemosphere by L Gomathi Devi (2009) -
Itakura, M., Niizeki, N., Toyoda, H. & Iwasaki, H. Hall effect and thermoelectric power in semiconductive TiO2 . Jpn. J. Appl. Phys. 6, 311–317 (1967).
(
10.1143/JJAP.6.311
) / Jpn. J. Appl. Phys. by M Itakura (1967) -
Feng, Y., Cho, I. S., Rao, P. M., Cai, L. & Zheng, X. Sol-flame synthesis: a general strategy to decorate nanowires with metal oxide/noble metal nanoparticles. Nano Lett. 13, 855–860 (2012).
(
10.1021/nl300060b
) / Nano Lett. by Y Feng (2012) -
Feng, Y., Cho, I. S., Cai, L., Rao, P. M. & Zheng, X. Sol-flame synthesis of hybrid metal oxide nanowires. Proc. Combustion Inst. 34, 2179–2186 (2013).
(
10.1016/j.proci.2012.06.106
) / Proc. Combustion Inst. by Y Feng (2013) -
Lee, C. H., Kim, D. R. & Zheng, X. Orientation-controlled alignment of axially modulated pn silicon nanowires. Nano Lett. 10, 5116–5122 (2010).
(
10.1021/nl103630c
) / Nano Lett. by CH Lee (2010) -
Chen, R. S., Chen, C. A., Wang, W. C., Tsai, H. Y. & Huang, Y. S. Transport properties in single-crystalline rutile TiO2 nanorods. Appl. Phys. Lett. 99, 222107–222109 (2011).
(
10.1063/1.3665635
) / Appl. Phys. Lett. by RS Chen (2011)
Dates
Type | When |
---|---|
Created | 12 years, 4 months ago (April 16, 2013, 7:07 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 8:53 p.m.) |
Indexed | 1 week, 2 days ago (Aug. 24, 2025, 6:51 p.m.) |
Issued | 12 years, 4 months ago (April 16, 2013) |
Published | 12 years, 4 months ago (April 16, 2013) |
Published Online | 12 years, 4 months ago (April 16, 2013) |
@article{Cho_2013, title={Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2729}, DOI={10.1038/ncomms2729}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Cho, In Sun and Lee, Chi Hwan and Feng, Yunzhe and Logar, Manca and Rao, Pratap M. and Cai, Lili and Kim, Dong Rip and Sinclair, Robert and Zheng, Xiaolin}, year={2013}, month=apr }