Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Cho, I. S., Lee, C. H., Feng, Y., Logar, M., Rao, P. M., Cai, L., Kim, D. R., Sinclair, R., & Zheng, X. (2013). Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nature Communications, 4(1).

Authors 9
  1. In Sun Cho (first)
  2. Chi Hwan Lee (additional)
  3. Yunzhe Feng (additional)
  4. Manca Logar (additional)
  5. Pratap M. Rao (additional)
  6. Lili Cai (additional)
  7. Dong Rip Kim (additional)
  8. Robert Sinclair (additional)
  9. Xiaolin Zheng (additional)
References 46 Referenced 266
  1. Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995). (10.1021/cr00035a013) / Chem. Rev. by AL Linsebigler (1995)
  2. Bak, T., Nowotny, J., Rekas, M. & Sorrell, C. C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991–1022 (2002). (10.1016/S0360-3199(02)00022-8) / Int. J. Hydrogen Energy by T Bak (2002)
  3. Nowotny, J., Sorrell, C. C., Bak, T. & Sheppard, L. R. Solar-hydrogen: Unresolved problems in solid-state science. Solar Energy 78, 593–602 (2005). (10.1016/j.solener.2005.01.008) / Solar Energy by J Nowotny (2005)
  4. Ni, M., Leung, M. K. H., Leung, D. Y. C. & Sumathy, K. A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renewable and Sustainable Energy Rev. 11, 401–425 (2007). (10.1016/j.rser.2005.01.009) / Renewable and Sustainable Energy Rev. by M Ni (2007)
  5. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). (10.1038/238037a0) / Nature by A Fujishima (1972)
  6. Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995). (10.1021/cr00033a004) / Chem. Rev. by MR Hoffmann (1995)
  7. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007). (10.1021/cr0500535) / Chem. Rev. by X Chen (2007)
  8. Chen, Z. et al. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010). (10.1557/JMR.2010.0020) / J. Mater. Res. by Z Chen (2010)
  9. Murphy, A. B. et al. Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999–2017 (2006). (10.1016/j.ijhydene.2006.01.014) / Int. J. Hydrogen Energy by AB Murphy (2006)
  10. Choi, W., Termin, A. & Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994). (10.1021/j100102a038) / J. Phys. Chem. by W Choi (1994)
  11. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001). (10.1126/science.1061051) / Science by R Asahi (2001)
  12. Park, J. H., Kim, S. & Bard, A. J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24–28 (2005). (10.1021/nl051807y) / Nano Lett. by JH Park (2005)
  13. Khan, S. U. M., Al-Shahry, M. & Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 . Science 297, 2243–2245 (2002). (10.1126/science.1075035) / Science by SUM Khan (2002)
  14. Hashimoto, K., Irie, H. & Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Japn. J. Appl. Phys. Part 1 Regular Papers Brief Commun. Rev. Papers 44, 8269–8285 (2005). / Japn. J. Appl. Phys. Part 1 Regular Papers Brief Commun. Rev. Papers by K Hashimoto (2005)
  15. Yin, W.-J. et al. Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO2 . Phys. Rev. B 82, 045106 (2010). (10.1103/PhysRevB.82.045106) / Phys. Rev. B by W-J Yin (2010)
  16. Gai, Y., Li, J., Li, S.-S., Xia, J.-B. & Wei, S.-H. Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett. 102, 036402 (2009). (10.1103/PhysRevLett.102.036402) / Phys. Rev. Lett. by Y Gai (2009)
  17. Wang, P. et al. Optimizing photoelectrochemical properties of TiO2 by chemical codoping. Phy. Rev. B 82, 193103 (2010). (10.1103/PhysRevB.82.193103) / Phy. Rev. B by P Wang (2010)
  18. Ma, X. et al. Effect of compensated codoping on the photoelectrochemical properties of anatase TiO2 photocatalyst. J. Phys. Chem. C 115, 16963–16969 (2011). (10.1021/jp202750w) / J. Phys. Chem. C by X Ma (2011)
  19. Wang, D., Zou, Y., Wen, S. & Fan, D. A passivated codoping approach to tailor the band edges of TiO2 for efficient photocatalytic degradation of organic pollutants. Appl. Phys. Lett. 95, 012106–012106-3 (2009). (10.1063/1.3174917) / Appl. Phys. Lett. by D Wang (2009)
  20. Long, R. & English, N. J. First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania. Appl. Phys. Lett. 94, 132102–132103 (2009). (10.1063/1.3114608) / Appl. Phys. Lett. by R Long (2009)
  21. Niu, M., Xu, W., Shao, X. & Cheng, D. Enhanced photoelectrochemical performance of rutile TiO2 by Sb-N donor-acceptor coincorporation from first principles calculations. Appl. Phys. Lett. 99, 203111–203113 (2011). (10.1063/1.3662968) / Appl. Phys. Lett. by M Niu (2011)
  22. Zhu, W. et al. Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys. Rev. Lett. 103, 226401 (2009). (10.1103/PhysRevLett.103.226401) / Phys. Rev. Lett. by W Zhu (2009)
  23. Breault, T. M. & Bartlett, B. M. Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue dye. J. Phys. Chem. C 116, 5986–5994 (2012). (10.1021/jp2078456) / J. Phys. Chem. C by TM Breault (2012)
  24. Wang, E., He, T., Zhao, L., Chen, Y. & Cao, Y. Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J. Mater. Chem. 21, 144–150 (2011). (10.1039/C0JM02539A) / J. Mater. Chem. by E Wang (2011)
  25. Liu, H. et al. (Mo+N) codoped TiO2 for enhanced visible-light photoactivity. Appl. Surf. Sci. 257, 9355–9361 (2011). (10.1016/j.apsusc.2011.05.085) / Appl. Surf. Sci. by H Liu (2011)
  26. Kubacka, A., Bachiller-Baeza, B.n., Coloó;n, G. & Fernaóndez-Garció, M. W,N-codoped tio2-anatase: a sunlight-operated catalyst for efficient and selective aromatic hydrocarbons photo-oxidation. J. Phys. Chem. C 113, 8553–8555 (2009). (10.1021/jp902618g) / J. Phys. Chem. C by A Kubacka (2009)
  27. Obata, K., Irie, H. & Hashimoto, K. Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light. Chem. Phys. 339, 124–132 (2007). (10.1016/j.chemphys.2007.07.044) / Chem. Phys. by K Obata (2007)
  28. Joseph, M., Tabata, H., Saeki, H., Ueda, K. & Kawai, T. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B 302, 140–148 (2001). (10.1016/S0921-4526(01)00419-7) / Physica B by M Joseph (2001)
  29. Ahn, K.-S. et al. Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Appl. Phys. Lett. 91, 231909–231909-3 (2007). (10.1063/1.2822440) / Appl. Phys. Lett. by K-S Ahn (2007)
  30. Ban, C. et al. A novel codoping approach for enhancing the performance of LiFePO4 cathodes. Adv. Energy Mater. 2, 1028–1032 (2012). (10.1002/aenm.201200085) / Adv. Energy Mater. by C Ban (2012)
  31. Neville, E. M. et al. Carbon-doped TiO2 and carbon, tungsten-codoped tio2 through sol–gel processes in the presence of melamine borate: reflections through photocatalysis. J. Phys. Chem. C 116, 16511–16521 (2012). (10.1021/jp303645p) / J. Phys. Chem. C by EM Neville (2012)
  32. Zhou, X., Peng, F., Wang, H. & Yu, H. Boron and nitrogen-codoped TiO2 nanorods: synthesis, characterization, and photoelectrochemical properties. J. Solid State Chem. 184, 3002–3007 (2011). (10.1016/j.jssc.2011.09.017) / J. Solid State Chem. by X Zhou (2011)
  33. Thind, S. S., Wu, G. & Chen, A. Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Appl. Catalysis B: Environ. 111–112, 38–45 (2012). (10.1016/j.apcatb.2011.09.016) / Appl. Catalysis B: Environ. by SS Thind (2012)
  34. Cho, I. S. et al. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011). (10.1021/nl2029392) / Nano Lett. by IS Cho (2011)
  35. Hwang, Y. J., Hahn, C., Liu, B. & Yang, P. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6, 5060–5069 (2012). (10.1021/nn300679d) / ACS Nano by YJ Hwang (2012)
  36. Dotan, H., Sivula, K., Gratzel, M., Rothschild, A. & Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011). (10.1039/C0EE00570C) / Energy Environ. Sci. by H Dotan (2011)
  37. Di Valentin, C. et al. Adsorption of Water on reconstructed rutile TiO2(011)-(2 × 1): TiO double bonds and surface reactivity. J. Am. Chem. Soc. 127, 9895–9903 (2005). (10.1021/ja0511624) / J. Am. Chem. Soc. by C Di Valentin (2005)
  38. Wilson, J. N. & Idriss, H. Effect of surface reconstruction of TiO2(001) single crystal on the photoreaction of acetic acid. J. Catalysis 214, 46–52 (2003). (10.1016/S0021-9517(02)00172-0) / J. Catalysis by JN Wilson (2003)
  39. García-Mota, M. et al. Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem 3, 1607–1611 (2011). (10.1002/cctc.201100160) / ChemCatChem by M García-Mota (2011)
  40. Saison, T. et al. Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 115, 5657–5666 (2011). (10.1021/jp109134z) / J. Phys. Chem. C by T Saison (2011)
  41. Gomathi Devi, L., Narasimha Murthy, B. & Girish Kumar, S. Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light: Correlation of dye structure and its adsorptive tendency on the degradation rate. Chemosphere 76, 1163–1166 (2009). (10.1016/j.chemosphere.2009.04.005) / Chemosphere by L Gomathi Devi (2009)
  42. Itakura, M., Niizeki, N., Toyoda, H. & Iwasaki, H. Hall effect and thermoelectric power in semiconductive TiO2 . Jpn. J. Appl. Phys. 6, 311–317 (1967). (10.1143/JJAP.6.311) / Jpn. J. Appl. Phys. by M Itakura (1967)
  43. Feng, Y., Cho, I. S., Rao, P. M., Cai, L. & Zheng, X. Sol-flame synthesis: a general strategy to decorate nanowires with metal oxide/noble metal nanoparticles. Nano Lett. 13, 855–860 (2012). (10.1021/nl300060b) / Nano Lett. by Y Feng (2012)
  44. Feng, Y., Cho, I. S., Cai, L., Rao, P. M. & Zheng, X. Sol-flame synthesis of hybrid metal oxide nanowires. Proc. Combustion Inst. 34, 2179–2186 (2013). (10.1016/j.proci.2012.06.106) / Proc. Combustion Inst. by Y Feng (2013)
  45. Lee, C. H., Kim, D. R. & Zheng, X. Orientation-controlled alignment of axially modulated pn silicon nanowires. Nano Lett. 10, 5116–5122 (2010). (10.1021/nl103630c) / Nano Lett. by CH Lee (2010)
  46. Chen, R. S., Chen, C. A., Wang, W. C., Tsai, H. Y. & Huang, Y. S. Transport properties in single-crystalline rutile TiO2 nanorods. Appl. Phys. Lett. 99, 222107–222109 (2011). (10.1063/1.3665635) / Appl. Phys. Lett. by RS Chen (2011)
Dates
Type When
Created 12 years, 4 months ago (April 16, 2013, 7:07 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:53 p.m.)
Indexed 1 week, 2 days ago (Aug. 24, 2025, 6:51 p.m.)
Issued 12 years, 4 months ago (April 16, 2013)
Published 12 years, 4 months ago (April 16, 2013)
Published Online 12 years, 4 months ago (April 16, 2013)
Funders 0

None

@article{Cho_2013, title={Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2729}, DOI={10.1038/ncomms2729}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Cho, In Sun and Lee, Chi Hwan and Feng, Yunzhe and Logar, Manca and Rao, Pratap M. and Cai, Lili and Kim, Dong Rip and Sinclair, Robert and Zheng, Xiaolin}, year={2013}, month=apr }