Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
43
Referenced
536
-
Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).
(
10.1103/PhysRevLett.107.095901
) / Phys. Rev. Lett. by AJ Minnich (2011) -
Esfarjani, K. & Chen, G. . Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).
(
10.1103/PhysRevB.84.085204
) / Phys. Rev. B by K Esfarjani (2011) -
Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–168 (2008).
(
10.1038/nature06381
) / Nature by AI Hochbaum (2008) -
Balandin, A. A. . Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).
(
10.1038/nmat3064
) / Nat. Mater. by AA Balandin (2011) -
Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).
(
10.1126/science.1156446
) / Science by B Poudel (2008) -
Mehta, R. J. et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 11, 233–240 (2012).
(
10.1038/nmat3213
) / Nat. Mater. by RJ Mehta (2012) -
Yan, Z., Liu, G., Khan, J. M. & Balandin, A. A. . Graphene quilts for thermal management of high-power GaN transistors. Nat. Commun. 3, 827 (2012).
(
10.1038/ncomms1828
) / Nat. Commun. by Z Yan (2012) - Li, D. et al. Thermal conductivity of individual silicon nanowires. J. Appl. Phys. 83, 2934–2936 (2003). / J. Appl. Phys. by D Li (2003)
-
Yang, F. & Dames, C. . Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013).
(
10.1103/PhysRevB.87.035437
) / Phys. Rev. B by F Yang (2013) -
Henry, A. S. & Chen, G. . Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5, 1–12 (2008).
(
10.1166/jctn.2008.2454
) / J. Comput. Theor. Nanosci. by AS Henry (2008) -
Sellan, D. P., Turney, J. E., McGaughey, A. J. H. & Amon, C. H. . Cross-plane phonon transport in thin films. J. Appl. Phys. 108, 113524 (2010).
(
10.1063/1.3517158
) / J. Appl. Phys. by DP Sellan (2010) -
Ju, Y. S. & Goodson, K. E. . Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3004–3007 (1999).
(
10.1063/1.123994
) / Appl. Phys. Lett. by YS Ju (1999) - Dames, C. & Chen, G. . Thermal conductivity of nanostructured thermoelectric materials. In Thermoelectrics Handbook: Macro to Nano ed Rowe D. M. CRC Press: Boca Raton, (2006).
-
Callaway, J. . Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).
(
10.1103/PhysRev.113.1046
) / Phys. Rev. by J Callaway (1959) -
Holland, M. G. . Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461–2471 (1963).
(
10.1103/PhysRev.132.2461
) / Phys. Rev. by MG Holland (1963) -
Koh, Y. K. & Cahill, D. G. . Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007).
(
10.1103/PhysRevB.76.075207
) / Phys. Rev. B by YK Koh (2007) -
Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2009).
(
10.1038/nmat2568
) / Nat. Mater. by ME Siemens (2009) -
Johnson, J. A. et al. Phase-controlled, heterodyne laser-induced transient grating measurements of thermal transport properties in opaque materials. J. Appl. Phys. 111, 023503 (2012).
(
10.1063/1.3675467
) / J. Appl. Phys. by JA Johnson (2012) -
Johnson, J. A. et al. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013).
(
10.1103/PhysRevLett.110.025901
) / Phys. Rev. Lett. by JA Johnson (2013) -
Johnson, J. A. et al. Experimental evidence of non-diffusive thermal transport in Si and GaAs. MRS Proc. 1347, doi:10.1557/opl.2011.1333 (2011).
(
10.1557/opl.2011.1333
) -
Cahill, D. G. . Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).
(
10.1063/1.1819431
) / Rev. Sci. Instrum. by DG Cahill (2004) -
Schmidt, A. J., Chen, X. & Chen, G. . Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).
(
10.1063/1.3006335
) / Rev. Sci. Instrum. by AJ Schmidt (2008) -
Scouler, W. J. . Temperature-modulated reflectance of gold from 2 to 10 eV. Phys. Rev. Lett. 18, 445–448 (1967).
(
10.1103/PhysRevLett.18.445
) / Phys. Rev. Lett. by WJ Scouler (1967) -
Yamane, T., Nagai, N., Katayama, S. & Todoki, M. . Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J. Appl. Phys. 91, 9772–9776 (2002).
(
10.1063/1.1481958
) / J. Appl. Phys. by T Yamane (2002) -
Inyushkin, A. V., Taldenkov, A. N., Gibin, A. M., Gusev, A. V. & Pohl, H. J. . On the isotope effect in thermal conductivity of silicon. Phys. Status Solidi C 1, 2995–2998 (2004).
(
10.1002/pssc.200405341
) / Phys. Status Solidi C by AV Inyushkin (2004) -
Nabovati, A., Sellan, D. P. & Amon, C. H. . On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230, 5864–5876 (2011).
(
10.1016/j.jcp.2011.03.061
) / J. Comput. Phys. by A Nabovati (2011) -
Slack, G. A. . Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J. Appl. Phys. 35, 3460–3466 (1964).
(
10.1063/1.1713251
) / J. Appl. Phys. by GA Slack (1964) - Incropera, F. P., Dewitt, D. P., Bergman, T. L. & Lavine, A. S. . Fundamentals of Heat and Mass Transfer 6 edn John Wiley & Sons (2007).
-
Glassbrenner, C. J. & Slack, G. A. . Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134, 1058–1069 (1964).
(
10.1103/PhysRev.134.A1058
) / Phys. Rev. by CJ Glassbrenner (1964) -
Allen, P. B. & Feldman, A. . Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581–12588 (1993).
(
10.1103/PhysRevB.48.12581
) / Phys. Rev. B by PB Allen (1993) -
Lee, S. M. & Cahill, D. G. . Heat transport in thin dielectric films. J. Appl. Phys. 81, 2590–2595 (1997).
(
10.1063/1.363923
) / J. Appl. Phys. by SM Lee (1997) -
Fischer, G., Hoffmann, H. & Vancea, J. . Mean free path and density of conductance electrons in platinum determined by the size effect in extremely thin films. Phys. Rev. B 22, 6065–6073 (1980).
(
10.1103/PhysRevB.22.6065
) / Phys. Rev. B by G Fischer (1980) -
Wang, W. & Cahill, D. G. . Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu. Phys. Rev. Lett. 109, 175503 (2012).
(
10.1103/PhysRevLett.109.175503
) / Phys. Rev. Lett. by W Wang (2012) -
Liu, X. et al. High thermal conductivity of a hydrogenated amorphous silicon film. Phys. Rev. Lett. 102, 035901 (2009).
(
10.1103/PhysRevLett.102.035901
) / Phys. Rev. Lett. by X Liu (2009) -
Cahill, D. G., Katiyar, M. & Abelson, J. R. . Thermal conductivity of a-Si:H thin films. Phys. Rev. B 50, 6077–6081 (1994).
(
10.1103/PhysRevB.50.6077
) / Phys. Rev. B by DG Cahill (1994) -
He, Y., Donadio, D. & Galli, G. . Heat transport in amorphous silicon–interplay between morphology and disorder. Appl. Phys. Lett. 98, 144101 (2011).
(
10.1063/1.3574366
) / Appl. Phys. Lett. by Y He (2011) -
Zink, B. L., Pietri, R. & Hellman, F. . Thermal conductivity and specific heat of thin-film amorphous silicon. Phys. Rev. Lett. 96, 055902 (2006).
(
10.1103/PhysRevLett.96.055902
) / Phys. Rev. Lett. by BL Zink (2006) -
Yang, H. et al. Anomalously high thermal conductivity of amorphous Si deposited by hot-wire chemical vapor deposition. Phys. Rev. B 81, 104203 (2010).
(
10.1103/PhysRevB.81.104203
) / Phys. Rev. B by H Yang (2010) -
Stevens, R. J., Smith, A. N. & Norris, P. M. . Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. J. Heat Transfer 127, 315–322 (2005).
(
10.1115/1.1857944
) / J. Heat Transfer by RJ Stevens (2005) -
Desai, P. D. . Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15, 967–983 (1986).
(
10.1063/1.555761
) / J. Phys. Chem. Ref. Data by PD Desai (1986) -
Esfarjani, K. & Stokes, H. T. . Method to extract anharmonic force constants from first principles calculations. Phys. Rev. B 77, 144112 (2008).
(
10.1103/PhysRevB.77.144112
) / Phys. Rev. B by K Esfarjani (2008) -
Malen, J. A. et al. Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transfer 133, 081601 (2011).
(
10.1115/1.4003545
) / J. Heat Transfer by JA Malen (2011) - Ashcroft, N. W. & Mermin, N. D. . Solid State Physics Thomson Learning, Inc. (1976).
Dates
Type | When |
---|---|
Created | 12 years, 4 months ago (March 27, 2013, 8:34 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 9:01 p.m.) |
Indexed | 17 hours, 50 minutes ago (Aug. 22, 2025, 12:52 a.m.) |
Issued | 12 years, 4 months ago (March 27, 2013) |
Published | 12 years, 4 months ago (March 27, 2013) |
Published Online | 12 years, 4 months ago (March 27, 2013) |
@article{Regner_2013, title={Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance}, volume={4}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2630}, DOI={10.1038/ncomms2630}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Regner, Keith T. and Sellan, Daniel P. and Su, Zonghui and Amon, Cristina H. and McGaughey, Alan J.H. and Malen, Jonathan A.}, year={2013}, month=mar }